BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 11309116)

  • 1. Identification of a twin-arginine leader-binding protein.
    Oresnik IJ; Ladner CL; Turner RJ
    Mol Microbiol; 2001 Apr; 40(2):323-31. PubMed ID: 11309116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hydrophobic region of the DmsA twin-arginine leader peptide determines specificity with chaperone DmsD.
    Winstone TM; Tran VA; Turner RJ
    Biochemistry; 2013 Oct; 52(43):7532-41. PubMed ID: 24093457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DmsD is required for the biogenesis of DMSO reductase in Escherichia coli but not for the interaction of the DmsA signal peptide with the Tat apparatus.
    Ray N; Oates J; Turner RJ; Robinson C
    FEBS Lett; 2003 Jan; 534(1-3):156-60. PubMed ID: 12527378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of residues in DmsD for twin-arginine leader peptide binding, defined through random and bioinformatics-directed mutagenesis.
    Chan CS; Winstone TM; Chang L; Stevens CM; Workentine ML; Li H; Wei Y; Ondrechen MJ; Paetzel M; Turner RJ
    Biochemistry; 2008 Mar; 47(9):2749-59. PubMed ID: 18247574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase.
    Papish AL; Ladner CL; Turner RJ
    J Biol Chem; 2003 Aug; 278(35):32501-6. PubMed ID: 12813051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification of a Tat leader peptide by co-expression with its chaperone.
    Stevens CM; Paetzel M
    Protein Expr Purif; 2012 Jul; 84(1):167-72. PubMed ID: 22609337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic characterization of the DmsD binding site for the DmsA twin-arginine motif.
    Winstone TM; Turner RJ
    Biochemistry; 2015 Mar; 54(11):2040-51. PubMed ID: 25659414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of GTP on system specific chaperone - Twin arginine signal peptide interaction.
    Cherak SJ; Turner RJ
    Biochem Biophys Res Commun; 2015 Oct; 465(4):753-7. PubMed ID: 26299930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple roles for the twin arginine leader sequence of dimethyl sulfoxide reductase of Escherichia coli.
    Sambasivarao D; Turner RJ; Simala-Grant JL; Shaw G; Hu J; Weiner JH
    J Biol Chem; 2000 Jul; 275(29):22526-31. PubMed ID: 10801884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DmsD, a Tat system specific chaperone, interacts with other general chaperones and proteins involved in the molybdenum cofactor biosynthesis.
    Li H; Chang L; Howell JM; Turner RJ
    Biochim Biophys Acta; 2010 Jun; 1804(6):1301-9. PubMed ID: 20153451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli.
    Thomas JD; Daniel RA; Errington J; Robinson C
    Mol Microbiol; 2001 Jan; 39(1):47-53. PubMed ID: 11123687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins.
    Weiner JH; Bilous PT; Shaw GM; Lubitz SP; Frost L; Thomas GH; Cole JA; Turner RJ
    Cell; 1998 Apr; 93(1):93-101. PubMed ID: 9546395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Escherichia coli dimethyl sulfoxide reductase assembly and processing in strains defective for the sec-independent protein translocation system membrane targeting and translocation.
    Sambasivarao D; Dawson HA; Zhang G; Shaw G; Hu J; Weiner JH
    J Biol Chem; 2001 Jun; 276(23):20167-74. PubMed ID: 11389150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing interactions along the Escherichia coli twin-arginine translocation pathway using protein fragment complementation.
    Kostecki JS; Li H; Turner RJ; DeLisa MP
    PLoS One; 2010 Feb; 5(2):e9225. PubMed ID: 20169075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hydrophobic core of twin-arginine signal sequences orchestrates specific binding to Tat-pathway related chaperones.
    Shanmugham A; Bakayan A; Völler P; Grosveld J; Lill H; Bollen YJ
    PLoS One; 2012; 7(3):e34159. PubMed ID: 22479549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the quality control mechanism of the
    Sutherland GA; Grayson KJ; Adams NBP; Mermans DMJ; Jones AS; Robertson AJ; Auman DB; Brindley AA; Sterpone F; Tuffery P; Derreumaux P; Dutton PL; Robinson C; Hitchcock A; Hunter CN
    J Biol Chem; 2018 May; 293(18):6672-6681. PubMed ID: 29559557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif.
    Buchanan G; Sargent F; Berks BC; Palmer T
    Arch Microbiol; 2001 Dec; 177(1):107-12. PubMed ID: 11797051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific inhibition of the translocation of a subset of Escherichia coli TAT substrates by the TorA signal peptide.
    Chanal A; Santini CL; Wu LF
    J Mol Biol; 2003 Mar; 327(3):563-70. PubMed ID: 12634052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual pairing between assistants: interaction of the twin-arginine system-specific chaperone DmsD with the chaperonin GroEL.
    Chan CS; Song X; Qazi SJ; Setiaputra D; Yip CK; Chao TC; Turner RJ
    Biochem Biophys Res Commun; 2015 Jan; 456(4):841-6. PubMed ID: 25522883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration.
    McCrindle SL; Kappler U; McEwan AG
    Adv Microb Physiol; 2005; 50():147-98. PubMed ID: 16221580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.