BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11309394)

  • 1. A novel snare N-terminal domain revealed by the crystal structure of Sec22b.
    Gonzalez LC; Weis WI; Scheller RH
    J Biol Chem; 2001 Jun; 276(26):24203-11. PubMed ID: 11309394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional structure of the amino-terminal domain of syntaxin 6, a SNAP-25 C homolog.
    Misura KM; Bock JB; Gonzalez LC; Scheller RH; Weis WI
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9184-9. PubMed ID: 12082176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N-terminal domains of syntaxin 7 and vti1b form three-helix bundles that differ in their ability to regulate SNARE complex assembly.
    Antonin W; Dulubova I; Arac D; Pabst S; Plitzner J; Rizo J; Jahn R
    J Biol Chem; 2002 Sep; 277(39):36449-56. PubMed ID: 12114520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function.
    Antonin W; Holroyd C; Fasshauer D; Pabst S; Von Mollard GF; Jahn R
    EMBO J; 2000 Dec; 19(23):6453-64. PubMed ID: 11101518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An autoinhibitory mechanism for nonsyntaxin SNARE proteins revealed by the structure of Ykt6p.
    Tochio H; Tsui MM; Banfield DK; Zhang M
    Science; 2001 Jul; 293(5530):698-702. PubMed ID: 11474112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-association of the H3 region of syntaxin 1A. Implications for intermediates in SNARE complex assembly.
    Misura KM; Scheller RH; Weis WI
    J Biol Chem; 2001 Apr; 276(16):13273-82. PubMed ID: 11118447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the Habc domain of neuronal syntaxin from the squid Loligo pealei reveals conformational plasticity at its C-terminus.
    Bracher A; Weissenhorn W
    BMC Struct Biol; 2004 Mar; 4():6. PubMed ID: 15113421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective interaction of complexin with the neuronal SNARE complex. Determination of the binding regions.
    Pabst S; Hazzard JW; Antonin W; Südhof TC; Jahn R; Rizo J; Fasshauer D
    J Biol Chem; 2000 Jun; 275(26):19808-18. PubMed ID: 10777504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the inhibitory role of tomosyn in exocytosis.
    Pobbati AV; Razeto A; Böddener M; Becker S; Fasshauer D
    J Biol Chem; 2004 Nov; 279(45):47192-200. PubMed ID: 15316007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conserved membrane-spanning amino acid motif drives homomeric and supports heteromeric assembly of presynaptic SNARE proteins.
    Laage R; Rohde J; Brosig B; Langosch D
    J Biol Chem; 2000 Jun; 275(23):17481-7. PubMed ID: 10764817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The R-SNARE motif of tomosyn forms SNARE core complexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis.
    Hatsuzawa K; Lang T; Fasshauer D; Bruns D; Jahn R
    J Biol Chem; 2003 Aug; 278(33):31159-66. PubMed ID: 12782620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction between syntaxin 1A and cystic fibrosis transmembrane conductance regulator Cl- channels is mechanistically distinct from syntaxin 1A-SNARE interactions.
    Ganeshan R; Di A; Nelson DJ; Quick MW; Kirk KL
    J Biol Chem; 2003 Jan; 278(5):2876-85. PubMed ID: 12446681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the Golgi membrane recruitment of Sly1p by Sed5p.
    Bracher A; Weissenhorn W
    EMBO J; 2002 Nov; 21(22):6114-24. PubMed ID: 12426383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vam3p structure reveals conserved and divergent properties of syntaxins.
    Dulubova I; Yamaguchi T; Wang Y; Südhof TC; Rizo J
    Nat Struct Biol; 2001 Mar; 8(3):258-64. PubMed ID: 11224573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian ykt6 is a neuronal SNARE targeted to a specialized compartment by its profilin-like amino terminal domain.
    Hasegawa H; Zinsser S; Rhee Y; Vik-Mo EO; Davanger S; Hay JC
    Mol Biol Cell; 2003 Feb; 14(2):698-720. PubMed ID: 12589064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homo- and heterooligomeric SNARE complexes studied by site-directed spin labeling.
    Margittai M; Fasshauer D; Pabst S; Jahn R; Langen R
    J Biol Chem; 2001 Apr; 276(16):13169-77. PubMed ID: 11278719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of neuronal squid Sec1 implicate inter-domain hinge movement in the release of t-SNAREs.
    Bracher A; Weissenhorn W
    J Mol Biol; 2001 Feb; 306(1):7-13. PubMed ID: 11178889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of the neuronal SNARE protein syntaxin-1A.
    Lerman JC; Robblee J; Fairman R; Hughson FM
    Biochemistry; 2000 Jul; 39(29):8470-9. PubMed ID: 10913252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure and biophysical properties of a complex between the N-terminal SNARE region of SNAP25 and syntaxin 1a.
    Misura KM; Gonzalez LC; May AP; Scheller RH; Weis WI
    J Biol Chem; 2001 Nov; 276(44):41301-9. PubMed ID: 11533035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties.
    Fasshauer D; Antonin W; Margittai M; Pabst S; Jahn R
    J Biol Chem; 1999 May; 274(22):15440-6. PubMed ID: 10336434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.