BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 11310175)

  • 41. Nerve growth factor and glial cell line-derived neurotrophic factor restore the cholinergic neuronal phenotype in organotypic brain slices of the basal nucleus of Meynert.
    Weis C; Marksteiner J; Humpel C
    Neuroscience; 2001; 102(1):129-38. PubMed ID: 11226676
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development and Structural Variety of the Chondroitin Sulfate Proteoglycans-Contained Extracellular Matrix in the Mouse Brain.
    Horii-Hayashi N; Sasagawa T; Matsunaga W; Nishi M
    Neural Plast; 2015; 2015():256389. PubMed ID: 26649203
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons.
    Härtig W; Brauer K; Brückner G
    Neuroreport; 1992 Oct; 3(10):869-72. PubMed ID: 1421090
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The neuronal extracellular matrix restricts distribution and internalization of aggregated Tau-protein.
    Suttkus A; Holzer M; Morawski M; Arendt T
    Neuroscience; 2016 Jan; 313():225-35. PubMed ID: 26621125
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Homeostatically regulated spontaneous neuronal discharges protect developing cerebral cortex networks from becoming hyperactive following prolonged blockade of excitatory synaptic receptors.
    Corner MA; Baker RE; van Pelt J
    Brain Res; 2006 Aug; 1106(1):40-45. PubMed ID: 16836981
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of L-type Ca2+ channels in neural stem/progenitor cell differentiation.
    D'Ascenzo M; Piacentini R; Casalbore P; Budoni M; Pallini R; Azzena GB; Grassi C
    Eur J Neurosci; 2006 Feb; 23(4):935-44. PubMed ID: 16519658
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hyaluronic acid is present on specific perineuronal nets in the mouse cerebral cortex.
    Ueno H; Suemitsu S; Murakami S; Kitamura N; Wani K; Matsumoto Y; Aoki S; Okamoto M; Ishihara T
    Brain Res; 2018 Nov; 1698():139-150. PubMed ID: 30099038
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integrated contributions of basal forebrain and thalamus to neocortical activation elicited by pedunculopontine tegmental stimulation in urethane-anesthetized rats.
    Dringenberg HC; Olmstead MC
    Neuroscience; 2003; 119(3):839-53. PubMed ID: 12809705
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neuroanatomical characterization of perineuronal net components in the human cochlear nucleus and superior olivary complex.
    Weinrich L; Sonntag M; Arendt T; Morawski M
    Hear Res; 2018 Sep; 367():32-47. PubMed ID: 30025262
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of perineuronal net components in the synaptic bouton vicinity on lumbar α-motoneurons in the rat after spinalization and locomotor training: New insights from spatio-temporal changes in gene, protein expression and WFA labeling.
    Grycz K; Głowacka A; Ji B; Krzywdzińska K; Charzyńska A; Czarkowska-Bauch J; Gajewska-Woźniak O; Skup M
    Exp Neurol; 2022 Aug; 354():114098. PubMed ID: 35504345
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Distribution of parvalbumin-containing neurons and lectin-binding perineuronal nets in the rat basal forebrain.
    Brauer K; Härtig W; Bigl V; Brückner G
    Brain Res; 1993 Dec; 631(1):167-70. PubMed ID: 8298990
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The two faces of perineuronal nets.
    Viggiano D
    Neuroreport; 2000 Jul; 11(10):2087-90. PubMed ID: 10923649
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distribution of extracellular matrix macromolecules in the vestibular nuclei and cerebellum of the frog, Rana esculenta.
    Gaál B; Rácz É; Juhász T; Holló K; Matesz C
    Neuroscience; 2014 Jan; 258():162-73. PubMed ID: 24269935
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulatory roles of perineuronal nets and semaphorin 3A in the postnatal maturation of the central vestibular circuitry for graviceptive reflex.
    Ma CW; Kwan PY; Wu KL; Shum DK; Chan YS
    Brain Struct Funct; 2019 Mar; 224(2):613-626. PubMed ID: 30460552
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Co-expression of alpha7 and beta2 nicotinic acetylcholine receptor subunit mRNAs within rat brain cholinergic neurons.
    Azam L; Winzer-Serhan U; Leslie FM
    Neuroscience; 2003; 119(4):965-77. PubMed ID: 12831856
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Damaged Neocortical Perineuronal Nets Due to Experimental Focal Cerebral Ischemia in Mice, Rats and Sheep.
    Härtig W; Mages B; Aleithe S; Nitzsche B; Altmann S; Barthel H; Krueger M; Michalski D
    Front Integr Neurosci; 2017; 11():15. PubMed ID: 28860977
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of a topographically organized auditory network in slice culture is calcium dependent.
    Lohmann C; Ilic V; Friauf E
    J Neurobiol; 1998 Feb; 34(2):97-112. PubMed ID: 9468382
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Specificity of attachment and neurite outgrowth of dissociated basal forebrain cholinergic neurons seeded on to organotypic slice cultures of forebrain.
    Robertson RT; Baratta J; Kageyama GH; Ha DH; Yu J
    Neuroscience; 1997 Oct; 80(3):741-52. PubMed ID: 9276490
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Extracellular matrix organization in various regions of rat brain grey matter.
    Brückner G; Härtig W; Kacza J; Seeger J; Welt K; Brauer K
    J Neurocytol; 1996 May; 25(5):333-46. PubMed ID: 8818977
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Elevated matrix metalloproteinase-9 and degradation of perineuronal nets in cerebrocortical multiple sclerosis plaques.
    Gray E; Thomas TL; Betmouni S; Scolding N; Love S
    J Neuropathol Exp Neurol; 2008 Sep; 67(9):888-99. PubMed ID: 18716555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.