BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 11311136)

  • 1. Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum.
    Elliott JL; Saliba KJ; Kirk K
    Biochem J; 2001 May; 355(Pt 3):733-9. PubMed ID: 11311136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Malaria Parasite's Lactate Transporter PfFNT Is the Target of Antiplasmodial Compounds Identified in Whole Cell Phenotypic Screens.
    Hapuarachchi SV; Cobbold SA; Shafik SH; Dennis AS; McConville MJ; Martin RE; Kirk K; Lehane AM
    PLoS Pathog; 2017 Feb; 13(2):e1006180. PubMed ID: 28178359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identity of a Plasmodium lactate/H(+) symporter structurally unrelated to human transporters.
    Wu B; Rambow J; Bock S; Holm-Bertelsen J; Wiechert M; Soares AB; Spielmann T; Beitz E
    Nat Commun; 2015 Feb; 6():6284. PubMed ID: 25669138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter.
    Cranmer SL; Conant AR; Gutteridge WE; Halestrap AP
    J Biol Chem; 1995 Jun; 270(25):15045-52. PubMed ID: 7797486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of lactate in Plasmodium falciparum-infected human erythrocytes.
    Kanaani J; Ginsburg H
    J Cell Physiol; 1991 Dec; 149(3):469-76. PubMed ID: 1660483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A lactate and formate transporter in the intraerythrocytic malaria parasite, Plasmodium falciparum.
    Marchetti RV; Lehane AM; Shafik SH; Winterberg M; Martin RE; Kirk K
    Nat Commun; 2015 Mar; 6():6721. PubMed ID: 25823844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H+-coupled pantothenate transport in the intracellular malaria parasite.
    Saliba KJ; Kirk K
    J Biol Chem; 2001 May; 276(21):18115-21. PubMed ID: 11278793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic characterization of Na+/H+ antiport of Plasmodium falciparum membrane.
    Bosia A; Ghigo D; Turrini F; Nissani E; Pescarmona GP; Ginsburg H
    J Cell Physiol; 1993 Mar; 154(3):527-34. PubMed ID: 8382209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An acid-loading chloride transport pathway in the intraerythrocytic malaria parasite, Plasmodium falciparum.
    Henry RI; Cobbold SA; Allen RJ; Khan A; Hayward R; Lehane AM; Bray PG; Howitt SM; Biagini GA; Saliba KJ; Kirk K
    J Biol Chem; 2010 Jun; 285(24):18615-26. PubMed ID: 20332090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the inhibition by stilbene disulphonates and phloretin of lactate and pyruvate transport into rat and guinea-pig cardiac myocytes suggests the presence of two kinetically distinct carriers in heart cells.
    Wang X; Poole RC; Halestrap AP; Levi AJ
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):249-58. PubMed ID: 8439293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactate retards the development of erythrocytic stages of the human malaria parasite Plasmodium falciparum.
    Hikosaka K; Hirai M; Komatsuya K; Ono Y; Kita K
    Parasitol Int; 2015 Jun; 64(3):301-3. PubMed ID: 25176135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efflux of 6-deoxy-D-glucose from Plasmodium falciparum-infected erythrocytes via two saturable carriers.
    Goodyer ID; Hayes DJ; Eisenthal R
    Mol Biochem Parasitol; 1997 Feb; 84(2):229-39. PubMed ID: 9084042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-dependent uptake of inorganic phosphate by the intracellular malaria parasite.
    Saliba KJ; Martin RE; Bröer A; Henry RI; McCarthy CS; Downie MJ; Allen RJ; Mullin KA; McFadden GI; Bröer S; Kirk K
    Nature; 2006 Oct; 443(7111):582-5. PubMed ID: 17006451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters.
    Nancolas B; Guo L; Zhou R; Nath K; Nelson DS; Leeper DB; Blair IA; Glickson JD; Halestrap AP
    Biochem J; 2016 Apr; 473(7):929-36. PubMed ID: 26831515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional evidence for a monocarboxylate transporter (MCT) in strial marginal cells and molecular evidence for MCT1 and MCT2 in stria vascularis.
    Shimozono M; Scofield MA; Wangemann P
    Hear Res; 1997 Dec; 114(1-2):213-22. PubMed ID: 9447934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An endogenous monocarboxylate transport in Xenopus laevis oocytes.
    Tosco M; Orsenigo MN; Gastaldi G; Faelli A
    Am J Physiol Regul Integr Comp Physiol; 2000 May; 278(5):R1190-5. PubMed ID: 10801286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localisation of a candidate anion transporter to the surface of the malaria parasite.
    Henry RI; Martin RE; Howitt SM; Kirk K
    Biochem Biophys Res Commun; 2007 Nov; 363(2):288-91. PubMed ID: 17870052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Transport proteins as drug targets in Plasmodium falciparum. New perspectives in the treatment of malaria].
    Ellekvist P; Colding H
    Ugeskr Laeger; 2006 Mar; 168(13):1314-7. PubMed ID: 16579884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of lactate and pyruvate transport in cultured rat myotubes.
    von Grumbckow L; Elsner P; Hellsten Y; Quistorff B; Juel C
    Biochim Biophys Acta; 1999 Mar; 1417(2):267-75. PubMed ID: 10082802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vestibular dark cells contain an H+/monocarboxylate- cotransporter in their apical and basolateral membrane.
    Shimozono M; Liu J; Scofield MA; Wangemann P
    J Membr Biol; 1998 May; 163(1):37-46. PubMed ID: 9569248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.