These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11311711)

  • 1. In vitro modeling of human tibial strains during exercise in micro-gravity.
    Peterman MM; Hamel AJ; Cavanagh PR; Piazza SJ; Sharkey NA
    J Biomech; 2001 May; 34(5):693-8. PubMed ID: 11311711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotion in simulated microgravity: gravity replacement loads.
    McCrory JL; Baron HA; Balkin S; Cavanagh PR
    Aviat Space Environ Med; 2002 Jul; 73(7):625-31. PubMed ID: 12137096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locomotion in simulated zero gravity: ground reaction forces.
    McCrory JL; Derr J; Cavanagh PR
    Aviat Space Environ Med; 2004 Mar; 75(3):203-10. PubMed ID: 15018286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applied horizontal force increases impact loading in reduced-gravity running.
    Chang YH; Hamerski CM; Kram R
    J Biomech; 2001 May; 34(5):679-85. PubMed ID: 11311709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bungee force level, stiffness, and variation during treadmill locomotion in simulated microgravity.
    De Witt JK; Schaffner G; Ploutz-Snyder LL
    Aviat Space Environ Med; 2014 Apr; 85(4):449-55. PubMed ID: 24754208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ground reaction forces during treadmill running in microgravity.
    De Witt JK; Ploutz-Snyder LL
    J Biomech; 2014 Jul; 47(10):2339-47. PubMed ID: 24835563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running.
    Yang PF; Sanno M; Ganse B; Koy T; Brüggemann GP; Müller LP; Rittweger J
    PLoS One; 2014; 9(4):e94525. PubMed ID: 24732724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Integrated Musculoskeletal-Finite-Element Model to Evaluate Effects of Load Carriage on the Tibia During Walking.
    Xu C; Silder A; Zhang J; Hughes J; Unnikrishnan G; Reifman J; Rakesh V
    J Biomech Eng; 2016 Oct; 138(10):. PubMed ID: 27437640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ground reaction forces during locomotion in simulated microgravity.
    Davis BL; Cavanagh PR; Sommer HJ; Wu G
    Aviat Space Environ Med; 1996 Mar; 67(3):235-42. PubMed ID: 8775401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A full body musculoskeletal model based on flexible multibody simulation approach utilised in bone strain analysis during human locomotion.
    Al Nazer R; Klodowski A; Rantalainen T; Heinonen A; Sievänen H; Mikkola A
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):573-9. PubMed ID: 21302163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy.
    Ackermann M; van den Bogert AJ
    J Biomech; 2012 Apr; 45(7):1293-8. PubMed ID: 22365845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape and function of the diaphysis of the human tibia.
    Cristofolini L; Angeli E; Juszczyk JM; Juszczyk MM
    J Biomech; 2013 Jul; 46(11):1882-92. PubMed ID: 23726289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study.
    Perillo-Marcone A; Taylor M
    J Biomech Eng; 2007 Feb; 129(1):1-11. PubMed ID: 17227092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trabecular bone status in ultradistal tibia under habitual gait loading: a pQCT study in postmenopausal women.
    Lai YM; Qin L; Hung VW; Choy WY; Chan ST; Chan LW; Chan KM
    J Clin Densitom; 2006; 9(2):175-83. PubMed ID: 16785078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gravity replacement during running in simulated microgravity.
    Genc KO; Mandes VE; Cavanagh PR
    Aviat Space Environ Med; 2006 Nov; 77(11):1117-24. PubMed ID: 17086763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the relationship between tibia torsional deformation and regional muscle contractions in habitual human exercises in vivo.
    Yang PF; Kriechbaumer A; Albracht K; Sanno M; Ganse B; Koy T; Shang P; Brüggemann GP; Müller LP; Rittweger J
    J Biomech; 2015 Feb; 48(3):456-64. PubMed ID: 25543279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes of gait kinematics in different simulators of reduced gravity.
    Sylos-Labini F; Ivanenko YP; Cappellini G; Portone A; MacLellan MJ; Lacquaniti F
    J Mot Behav; 2013; 45(6):495-505. PubMed ID: 24079466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationships between multiaxial loading history and tibial strains during load carriage.
    Hughes JM; Dickin DC; Wang H
    J Sci Med Sport; 2019 Jan; 22(1):48-53. PubMed ID: 29884594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-shoe force measurements from locomotion in simulated zero gravity during parabolic flight.
    McCrory J; Schwass J; Connell R; Cavanagh P
    Clin Biomech (Bristol, Avon); 1997 Apr; 12(3):S7. PubMed ID: 11415704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of strain in the macaque ulna during functional activity.
    Demes B; Stern JT; Hausman MR; Larson SG; McLeod KJ; Rubin CT
    Am J Phys Anthropol; 1998 May; 106(1):87-100. PubMed ID: 9590526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.