These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 11311711)

  • 21. Patterns of strain in the macaque ulna during functional activity.
    Demes B; Stern JT; Hausman MR; Larson SG; McLeod KJ; Rubin CT
    Am J Phys Anthropol; 1998 May; 106(1):87-100. PubMed ID: 9590526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Moving through fluids.
    Newman DJ
    Hum Perf Extrem Environ; 1997 Jun; 2(1):106-8. PubMed ID: 12190059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Foot forces during exercise on the International Space Station.
    Genc KO; Gopalakrishnan R; Kuklis MM; Maender CC; Rice AJ; Bowersox KD; Cavanagh PR
    J Biomech; 2010 Nov; 43(15):3020-7. PubMed ID: 20728086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patterns of strain in the macaque tibia during functional activity.
    Demes B; Qin YX; Stern JT; Larson SG; Rubin CT
    Am J Phys Anthropol; 2001 Dec; 116(4):257-65. PubMed ID: 11745077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Effect of the Gravity Loading Countermeasure Skinsuit Upon Movement and Strength.
    Carvil PA; Attias J; Evetts SN; Waldie JM; Green DA
    J Strength Cond Res; 2017 Jan; 31(1):154-161. PubMed ID: 27135470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Partial weight bearing of the tibia.
    Ganse B; Yang PF; Gardlo J; Gauger P; Kriechbaumer A; Pape HC; Koy T; Müller LP; Rittweger J
    Injury; 2016 Aug; 47(8):1777-82. PubMed ID: 27316448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An integrative modeling approach for the efficient estimation of cross sectional tibial stresses during locomotion.
    Derrick TR; Edwards WB; Fellin RE; Seay JF
    J Biomech; 2016 Feb; 49(3):429-35. PubMed ID: 26803338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strain Response of the Anterior Cruciate Ligament to Uniplanar and Multiplanar Loads During Simulated Landings: Implications for Injury Mechanism.
    Kiapour AM; Demetropoulos CK; Kiapour A; Quatman CE; Wordeman SC; Goel VK; Hewett TE
    Am J Sports Med; 2016 Aug; 44(8):2087-96. PubMed ID: 27159285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanics of the classic metaphyseal lesion: finite element analysis.
    Tsai A; Coats B; Kleinman PK
    Pediatr Radiol; 2017 Nov; 47(12):1622-1630. PubMed ID: 28721473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rat bone properties and their relationship to gait during growth.
    Song H; Polk JD; Kersh ME
    J Exp Biol; 2019 Sep; 222(Pt 18):. PubMed ID: 31492819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Periosteal bone formation stimulated by externally induced bending strains.
    Raab-Cullen DM; Akhter MP; Kimmel DB; Recker RR
    J Bone Miner Res; 1994 Aug; 9(8):1143-52. PubMed ID: 7976496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exercise-induced bone formation is poorly linked to local strain magnitude in the sheep tibia.
    Wallace IJ; Demes B; Mongle C; Pearson OM; Polk JD; Lieberman DE
    PLoS One; 2014; 9(6):e99108. PubMed ID: 24897411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterizing gait induced normal strains in a murine tibia cortical bone defect model.
    Prasad J; Wiater BP; Nork SE; Bain SD; Gross TS
    J Biomech; 2010 Oct; 43(14):2765-70. PubMed ID: 20674920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A biomechanical study of proximal tibia bone grafting through the lateral approach.
    Lim CT; Ng DQK; Tan KJ; Ramruttun AK; Wang W; Chong DYR
    Injury; 2016 Nov; 47(11):2407-2414. PubMed ID: 27659850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of custom and semi-custom foot orthotics on second metatarsal bone strain during dynamic gait simulation.
    Meardon SA; Edwards B; Ward E; Derrick TR
    Foot Ankle Int; 2009 Oct; 30(10):998-1004. PubMed ID: 19796595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of tibial component malalignment on bone strain in revision total knee replacement.
    Rastetter BR; Wright SJ; Gheduzzi S; Miles AW; Clift SE
    Proc Inst Mech Eng H; 2016 Jun; 230(6):561-8. PubMed ID: 27006420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone mineral density in the proximal tibia varies as a function of static alignment and knee adduction angular momentum in individuals with medial knee osteoarthritis.
    Thorp LE; Wimmer MA; Block JA; Moisio KC; Shott S; Goker B; Sumner DR
    Bone; 2006 Nov; 39(5):1116-1122. PubMed ID: 16782419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of structural failure of tibial bone models under physiological loads: effect of CT density-modulus relationships.
    Tuncer M; Hansen UN; Amis AA
    Med Eng Phys; 2014 Aug; 36(8):991-7; discussion 991. PubMed ID: 24907128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic loading of the plantar aponeurosis in walking.
    Erdemir A; Hamel AJ; Fauth AR; Piazza SJ; Sharkey NA
    J Bone Joint Surg Am; 2004 Mar; 86(3):546-52. PubMed ID: 14996881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo strains in the femur of river cooter turtles (Pseudemys concinna) during terrestrial locomotion: tests of force-platform models of loading mechanics.
    Butcher MT; Espinoza NR; Cirilo SR; Blob RW
    J Exp Biol; 2008 Aug; 211(Pt 15):2397-407. PubMed ID: 18626073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.