BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11311874)

  • 1. Interactions among glucose, lactate and adenosine regulate energy substrate utilization in hippocampal cultures.
    Bliss TM; Sapolsky RM
    Brain Res; 2001 Apr; 899(1-2):134-41. PubMed ID: 11311874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated lactate suppresses neuronal firing in vivo and inhibits glucose metabolism in hippocampal slice cultures.
    Gilbert E; Tang JM; Ludvig N; Bergold PJ
    Brain Res; 2006 Oct; 1117(1):213-23. PubMed ID: 16996036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of glucose and lactate as substrates during NMDA-induced activation of hippocampal slices.
    Chih CP; He J; Sly TS; Roberts EL
    Brain Res; 2001 Mar; 893(1-2):143-54. PubMed ID: 11223002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycolysis regulates the induction of lactate utilization for synaptic potentials after hypoxia in the granule cell of guinea pig hippocampus.
    Takata T; Yang B; Sakurai T; Okada Y; Yokono K
    Neurosci Res; 2004 Dec; 50(4):467-74. PubMed ID: 15567484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate and glucose as energy substrates during, and after, oxygen deprivation in rat hippocampal acute and cultured slices.
    Cater HL; Chandratheva A; Benham CD; Morrison B; Sundstrom LE
    J Neurochem; 2003 Dec; 87(6):1381-90. PubMed ID: 14713294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of hypoxia-induced injury in cultured rat astrocytes by high levels of glucose.
    Kelleher JA; Chan PH; Chan TY; Gregory GA
    Stroke; 1993 Jun; 24(6):855-63. PubMed ID: 8506557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous monocarboxylates sustain hippocampal synaptic function and morphological integrity during energy deprivation.
    Izumi Y; Benz AM; Katsuki H; Zorumski CF
    J Neurosci; 1997 Dec; 17(24):9448-57. PubMed ID: 9391000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caudal hindbrain lactate infusion alters glucokinase, SUR1, and neuronal substrate fuel transporter gene expression in the dorsal vagal complex, lateral hypothalamic area, and ventromedial nucleus hypothalamus of hypoglycemic male rats.
    Vavaiya KV; Briski KP
    Brain Res; 2007 Oct; 1176():62-70. PubMed ID: 17889836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of lactate and beta-hydroxybutyrate on the energy metabolism and neural activity of hippocampal slices from adult and immature rat.
    Wada H; Okada Y; Nabetani M; Nakamura H
    Brain Res Dev Brain Res; 1997 Jul; 101(1-2):1-7. PubMed ID: 9263574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression Changes in Lactate and Glucose Metabolism and Associated Transporters in Basal Ganglia following Hypoxic-Ischemic Reperfusion Injury in Piglets.
    Zheng Y; Wang XM
    AJNR Am J Neuroradiol; 2018 Mar; 39(3):569-576. PubMed ID: 29326137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ coexpression of glucose and monocarboxylate transporter mRNAs in metabolic-sensitive caudal dorsal vagal complex catecholaminergic neurons: transcriptional reactivity to insulin-induced hypoglycemia and caudal hindbrain glucose or lactate repletion during insulin-induced hypoglycemia.
    Briski KP; Cherian AK; Genabai NK; Vavaiya KV
    Neuroscience; 2009 Dec; 164(3):1152-60. PubMed ID: 19744543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons.
    Schurr A; Miller JJ; Payne RS; Rigor BM
    J Neurosci; 1999 Jan; 19(1):34-9. PubMed ID: 9870935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactate utilization as an energy substrate in ischemic preconditioned rat brain slices.
    Kitano T; Nisimaru N; Shibata E; Iwasaka H; Noguchi T; Yamada K
    Life Sci; 2002 Dec; 72(4-5):557-64. PubMed ID: 12467896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxic injury to developing glial cells: protective effect of high glucose.
    Callahan DJ; Engle MJ; Volpe JJ
    Pediatr Res; 1990 Feb; 27(2):186-90. PubMed ID: 2314949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine production by brain cells.
    Jackson EK; Kotermanski SE; Menshikova EV; Dubey RK; Jackson TC; Kochanek PM
    J Neurochem; 2017 Jun; 141(5):676-693. PubMed ID: 28294336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the novel cyclosporine derivative PSC833 on glucose metabolism in rat primary cultures of neuronal and glial cells.
    Cruz F; Wolf A
    Biochem Pharmacol; 2001 Jul; 62(1):129-39. PubMed ID: 11377404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy substrate requirements for survival of rat retinal cells in culture: the importance of glucose and monocarboxylates.
    Wood JP; Chidlow G; Graham M; Osborne NN
    J Neurochem; 2005 May; 93(3):686-97. PubMed ID: 15836627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation.
    Schurr A; Payne RS; Miller JJ; Rigor BM
    J Neurochem; 1997 Jul; 69(1):423-6. PubMed ID: 9202338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. l-Lactate mediates neuroprotection against ischaemia by increasing TREK1 channel expression in rat hippocampal astrocytes in vitro.
    Banerjee A; Ghatak S; Sikdar SK
    J Neurochem; 2016 Jul; 138(2):265-81. PubMed ID: 27062641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further studies on the effects of topical lactate on amino acid efflux from the ischemic rat cortex.
    Cassady CJ; Phillis JW; O'Regan MH
    Brain Res; 2001 May; 901(1-2):30-7. PubMed ID: 11368947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.