BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 11312539)

  • 1. Membrane fusion induced by a lipopeptidic epitope from VP3 capside protein of hepatitis A virus.
    Chávez A; Pujol M; Alsina MA; Cajal Y
    Luminescence; 2001; 16(2):135-43. PubMed ID: 11312539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane fusion by an RGD-containing sequence from the core protein VP3 of hepatitis A virus and the RGA-analogue: implications for viral infection.
    Chávez A; Pujol M; Haro I; Alsina MA; Cajal Y
    Biopolymers; 2001 Jan; 58(1):63-77. PubMed ID: 11072230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence study on the interaction of a multiple antigenic peptide from hepatitis A virus with lipid vesicles.
    Ortiz A; Cajal Y; Haro I; Reig F; Alsina MA
    Biopolymers; 2000 May; 53(6):455-66. PubMed ID: 10775061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction study of peptide from VP3 capsid protein of hepatitis A virus through monolayers and fluorescence spectroscopy.
    Sospedra P; Prat J; Haro I; Mestres C; Busquets MA
    Luminescence; 2001; 16(2):103-7. PubMed ID: 11312535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of chain length of HAV-VP3 synthetic peptides on its interaction with biomembrane models.
    Sospedra P; Muñoz M; García M; Alsina MA; Mestres C; Haro I
    Biopolymers; 2000 Dec; 54(7):477-88. PubMed ID: 10984400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-induced destabilization of lipid bilayers by a peptide from the VP3 protein of the capsid of hepatitis A virus.
    Chávez A; Busquets MA; Pujol M; Alsina MA; Cajal Y
    Analyst; 1998 Nov; 123(11):2251-6. PubMed ID: 10396798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholipid-model membrane interactions with branched polypeptide conjugates of a hepatitis A virus peptide epitope.
    Nagy IB; Alsina MA; Haro I; Reig F; Hudecz F
    Bioconjug Chem; 2000; 11(1):30-8. PubMed ID: 10639082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane fusion correlates with surface charge in exocytic vesicles.
    Duman JG; Lee E; Lee GY; Singh G; Forte JG
    Biochemistry; 2004 Jun; 43(24):7924-39. PubMed ID: 15196037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane activity of biomimetic facially amphiphilic antibiotics.
    Arnt L; Rennie JR; Linser S; Willumeit R; Tew GN
    J Phys Chem B; 2006 Mar; 110(8):3527-32. PubMed ID: 16494408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of purified tear lipocalin with lipid membranes.
    Saaren-Seppälä H; Jauhiainen M; Tervo TM; Redl B; Kinnunen PK; Holopainen JM
    Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3649-56. PubMed ID: 16186346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gram-negative outer and inner membrane models: insertion of cyclic cationic lipopeptides.
    Clausell A; Garcia-Subirats M; Pujol M; Busquets MA; Rabanal F; Cajal Y
    J Phys Chem B; 2007 Jan; 111(3):551-63. PubMed ID: 17228913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relevance of lipid polar headgroups on boron-mediated changes in membrane physical properties.
    Verstraeten SV; Lanoue L; Keen CL; Oteiza PI
    Arch Biochem Biophys; 2005 Jun; 438(1):103-10. PubMed ID: 15882836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic interaction between oppositely charged vesicles: aggregation, lipid mixing, and disaggregation.
    Saeki D; Sugiura S; Baba T; Kanamori T; Sato S; Mukataka S; Ichikawa S
    J Colloid Interface Sci; 2008 Apr; 320(2):611-4. PubMed ID: 18258248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of size, lipid composition and bilayer fluidity of cationic liposomes on the transfection efficiency of nanolipoplexes.
    Ramezani M; Khoshhamdam M; Dehshahri A; Malaekeh-Nikouei B
    Colloids Surf B Biointerfaces; 2009 Aug; 72(1):1-5. PubMed ID: 19395245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, lipophilic derivatization and interaction with liposomes of HAV-VP3 (102-121) sequence by using spectroscopic techniques.
    Garcia M; Pujol M; Reig F; Alsina MA; Haro I
    Analyst; 1996 Nov; 121(11):1583-8. PubMed ID: 8952449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane association and contact formation by a synthetic analogue of polymyxin B and its fluorescent derivatives.
    Clausell A; Rabanal F; Garcia-Subirats M; Asunción Alsina M; Cajal Y
    J Phys Chem B; 2006 Mar; 110(9):4465-71. PubMed ID: 16509750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human opioid peptide Met-enkephalin binds to anionic phosphatidylserine in high preference to zwitterionic phosphatidylcholine: natural-abundance 13C NMR study on the binding state in large unilamellar vesicles.
    Kimura T
    Biochemistry; 2006 Dec; 45(51):15601-9. PubMed ID: 17176081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I.
    Massey JB; Pownall HJ
    Biochemistry; 2005 Aug; 44(30):10423-33. PubMed ID: 16042420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing and quantifying fusion of liposomes to mammalian sperm using resonance energy transfer and flow cytometric methods.
    Anzar M; Kakuda N; He L; Pauls KP; Buhr MM
    Cytometry; 2002 Sep; 49(1):22-7. PubMed ID: 12210607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.