These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 1131272)

  • 1. Elevated potassium efflux from dystrophic diaphragm: influence of diphenylhydantoin and lithium.
    Herzberg GR; Challberg MD; Hess BC; Howland JL
    Biochem Biophys Res Commun; 1975 Apr; 63(4):858-63. PubMed ID: 1131272
    [No Abstract]   [Full Text] [Related]  

  • 2. Phenytoin application in murine muscular dystrophy: behavioral improvement with no change in the abnormal intracellular Na:K ratio in skeletal muscles.
    Silverman H; Atwood HL; Bloom JW
    Exp Neurol; 1978 Dec; 62(3):618-27. PubMed ID: 750214
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of diphenylhydantoin and lithium on whole brain serotonin, sodium and potassium in mice.
    Umberkoman B; Joseph T
    Indian J Physiol Pharmacol; 1975; 19(2):94-7. PubMed ID: 1158437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of diphenylhydantoin on the transport of Na + and K + and the regulation of sugar transport in muscle in vitro.
    Bihler I; Sawh PC
    Biochim Biophys Acta; 1971 Oct; 249(1):240-51. PubMed ID: 5141128
    [No Abstract]   [Full Text] [Related]  

  • 5. Intracellular potassium activities in muscles of normal and dystrophic mice: an in vivo electrometric study.
    Charlton MP; Silverman H; Atwood HL
    Exp Neurol; 1981 Jan; 71(1):203-19. PubMed ID: 7449895
    [No Abstract]   [Full Text] [Related]  

  • 6. The study of (Methyl-3H)decamethonium dichloride incorporation into normal and dystrophic mouse muscle.
    Marusyk H; Monckton G
    J Physiol; 1976 Mar; 256(1):159-65. PubMed ID: 933024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Reversal by phenytoin (diphenylhydantoin) of the resting membrane potential of skeletal muscle from genetically dystrophic mice (author's transl)].
    Ozawa H; Komatsu K; Sato M
    Yakugaku Zasshi; 1978 Mar; 98(3):386-9. PubMed ID: 650419
    [No Abstract]   [Full Text] [Related]  

  • 8. Dystrophic and normal mice show age-dependent divergence of muscle sodium concentrations.
    Atwood HL; Kwan I
    Exp Neurol; 1978 Jun; 60(2):386-92. PubMed ID: 658211
    [No Abstract]   [Full Text] [Related]  

  • 9. Proteolysis in dystrophic hamster diaphragm and abdominal muscle.
    Nakatsu K; Morison J; Edmonds J
    Experientia; 1978 Mar; 34(3):318-9. PubMed ID: 147177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Availability of Mg2+, Na+, and K+-ATPase in the nuclei of the skeletal muscles of rabbits normally and during experimental muscular dystrophy].
    Sylakova AI; Konoplyts'ka OL; Huseva TN
    Ukr Biokhim Zh; 1975; 47(1):31-5. PubMed ID: 128169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes in protein turnover and ribonucleic acid of the diaphragm muscle of normal and dystrophic hamsters.
    Goldspink DF; Goldspink G
    Biochem J; 1977 Jan; 162(1):191-4. PubMed ID: 849275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation of the action of diphenylhydantoin on sodium efflux in barnacle muscle fibres.
    Bittar EE; Chen SS; Danielson BG; Tong EY
    Acta Physiol Scand; 1973 Sep; 89(1):30-8. PubMed ID: 4761518
    [No Abstract]   [Full Text] [Related]  

  • 13. Triglyceride metabolism in skeletal muscle from normal and dystrophic mice.
    Jato-Rodriguez JJ; Hudson AJ; Strickland KP
    Biochim Biophys Acta; 1974 Apr; 348(1):1-13. PubMed ID: 4365097
    [No Abstract]   [Full Text] [Related]  

  • 14. Intracellular concentration of elements in normal and dystrophic skeletal muscles of the chicken.
    Misra LK; Smith NK; Chang DC; Sparks RL; Cameron IL; Beall PT; Harrist R; Nichols BL; Fanguy RC; Hazlewood CF
    J Cell Physiol; 1980 May; 103(2):193-200. PubMed ID: 7440632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similarities in protein synthesis and degradation in normal and dystrophic muscle cultures.
    Wolitzky BA; Segal HL; Hudecki MS
    Exp Cell Res; 1982 Feb; 137(2):295-9. PubMed ID: 7056291
    [No Abstract]   [Full Text] [Related]  

  • 16. Age-related changes of RNA and DNA in muscles of normal and dystrophic hamsters.
    Goldspink DF
    Life Sci; 1977 Jan; 20(1):57-64. PubMed ID: 834111
    [No Abstract]   [Full Text] [Related]  

  • 17. Development of changes in cation content of muscles from the 129 ReJ dystrophic mouse.
    Jackson MJ; Edwards RH
    Comp Biochem Physiol A Comp Physiol; 1987; 87(2):349-54. PubMed ID: 2886275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal potassium conductance associated with genetic muscular dystrophy.
    Howland JL
    Nature; 1974 Oct; 251(5477):724-5. PubMed ID: 4427672
    [No Abstract]   [Full Text] [Related]  

  • 19. Dystrophin deficiency in canine X-linked muscular dystrophy in Japan (CXMDJ) alters myosin heavy chain expression profiles in the diaphragm more markedly than in the tibialis cranialis muscle.
    Yuasa K; Nakamura A; Hijikata T; Takeda S
    BMC Musculoskelet Disord; 2008 Jan; 9():1. PubMed ID: 18182116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The regulatory role of glucose 1,6-diphosphate in muscle of dystrophic mice.
    Beitner R; Nordenberg J
    FEBS Lett; 1979 Feb; 98(1):199-202. PubMed ID: 428537
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.