These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 11312786)
41. Persistence behaviour of fungicide tebuconazole in a viticulture application. Kundu C; Goon A; Bhattacharyya A Bull Environ Contam Toxicol; 2014 Apr; 92(4):415-9. PubMed ID: 24522828 [TBL] [Abstract][Full Text] [Related]
42. Pesticides and trace metals residue in grape and home made wine in Jordan. Al Nasir F; Jiries AG; Batarseh MI; Beese F Environ Monit Assess; 2001 Feb; 66(3):253-63. PubMed ID: 11281423 [TBL] [Abstract][Full Text] [Related]
43. Plant protection product residues in white grapes and wines of "Malvasia Istriana" produced in Istria. Baša Česnik H; Velikonja Bolta Š; Bavčar D; Radeka S; Lisjak K Food Addit Contam Part B Surveill; 2016 Dec; 9(4):256-260. PubMed ID: 27397558 [TBL] [Abstract][Full Text] [Related]
44. Gas chromatographic determination of azoxystrobin, fluazinam, kresoxim-methyl, mepanipyrim, and tetraconazole in grapes, must, and wine. Cabras P; Angioni A; Garau VL; Pirisi FM; Brandolini V J AOAC Int; 1998; 81(6):1185-9. PubMed ID: 9850581 [TBL] [Abstract][Full Text] [Related]
45. A Bayesian approach to assessing the uncertainty in estimating bioconcentration factors in earthworms--the example of quinoxyfen. Fragoulis G; Merli A; Reeves G; Meregalli G; Stenberg K; Tanaka T; Capri E Pest Manag Sci; 2011 Jun; 67(6):656-64. PubMed ID: 21337673 [TBL] [Abstract][Full Text] [Related]
46. The effect of pyrimethanil on the growth of wine yeasts. Cus F; Raspor P Lett Appl Microbiol; 2008 Jul; 47(1):54-9. PubMed ID: 18544142 [TBL] [Abstract][Full Text] [Related]
47. Pyrimethanil residues on table grapes Italia after field treatment. Angioni A; Sarais G; Dedola F; Caboni P J Environ Sci Health B; 2006; 41(6):833-41. PubMed ID: 16893773 [TBL] [Abstract][Full Text] [Related]
48. Decay of methidathion on Greek soultanina grapes during storage and on the vines. Kyriakidis NB; Athanasopoulos PE; Thanos A; Pappas C; Yialitaki M J Agric Food Chem; 2000 Aug; 48(8):3095-7. PubMed ID: 10956075 [TBL] [Abstract][Full Text] [Related]
49. Sensitivity of Uncinula necator to quinoxyfen: evaluation of isolates selected using a discriminatory dose screen. Green EA; Gustafson GD Pest Manag Sci; 2006 Jun; 62(6):492-7. PubMed ID: 16612812 [TBL] [Abstract][Full Text] [Related]
50. Fungicide residues in pears, apples and grapes after post harvest treatments by thermonebulization. Pompi V; Donnarumma L; Rossi E; Rosati S Commun Agric Appl Biol Sci; 2005; 70(4):1067-73. PubMed ID: 16628956 [TBL] [Abstract][Full Text] [Related]
51. Amarone: a modern wine coming from an ancient production technology. Paronetto L; Dellaglio F Adv Food Nutr Res; 2011; 63():285-306. PubMed ID: 21867898 [TBL] [Abstract][Full Text] [Related]
52. Residues of dikar and ethylenethiourea in treated grapes and commercial grape products. Ripley BD; Cox DF; Wiebe J; Frank R J Agric Food Chem; 1978; 26(1):134-6. PubMed ID: 621319 [No Abstract] [Full Text] [Related]
53. Monitoring the behavior of imazalil and its metabolite in grapes, apples, and the processing of fruit wine at enantiomeric level. Li R; Pan X; An X; Wang K; Dong F; Xu J; Liu X; Wu X; Zheng Y J Sci Food Agric; 2021 Oct; 101(13):5478-5486. PubMed ID: 33682082 [TBL] [Abstract][Full Text] [Related]
54. [Analysis of residues of the fungicide cymoxanil in grapes using multicolumn HPLC]. Lindner W; Posch W; Lechner W Z Lebensm Unters Forsch; 1984 Jun; 178(6):471-4. PubMed ID: 6485553 [TBL] [Abstract][Full Text] [Related]
55. Fate of multi-residue insecticides and their metabolites in the process of vinification: Analytical method validation, dissipation kinetics, processing factor, and risk assessment. Ahammed Shabeer TP; Hingmire S; Taynath B; Deshmukh U; Somkuwar R; Sharma AK Environ Pollut; 2024 Jul; 352():124122. PubMed ID: 38723707 [TBL] [Abstract][Full Text] [Related]
56. Evaluation of teflubenzuron residue levels in grapes exposed to field treatments and in the must and wine produced from them. Tsiropoulos NG; Aplada-Sarlis PG; Miliadis GE J Agric Food Chem; 1999 Nov; 47(11):4583-6. PubMed ID: 10552854 [TBL] [Abstract][Full Text] [Related]
57. Optimizing the process of making sweet wines to minimize the content of ochratoxin A. Ruíz Bejarano MJ; Rodríguez Dodero MC; García Barroso C J Agric Food Chem; 2010 Dec; 58(24):13006-12. PubMed ID: 21121626 [TBL] [Abstract][Full Text] [Related]
58. Removal of famoxadone, fluquinconazole and trifloxystrobin residues in red wines: effects of clarification and filtration processes. Oliva J; Payá P; Cámara MA; Barba A J Environ Sci Health B; 2007; 42(7):775-81. PubMed ID: 17763033 [TBL] [Abstract][Full Text] [Related]
59. Pear distillates from pear juice concentrate: effect of lees in the aromatic composition. García-Llobodanin L; Achaerandio I; Ferrando M; Güell C; López F J Agric Food Chem; 2007 May; 55(9):3462-8. PubMed ID: 17394335 [TBL] [Abstract][Full Text] [Related]
60. Fate of parathion in artificially fortified grape juice processed into wine. Kawar NS; Gunther FA; Iwata Y J Environ Sci Health B; 1978; 13(1):1-9. PubMed ID: 632538 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]