BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 11312893)

  • 1. Preparative-scale isolation of four anthocyanin components of black currant (Ribes nigrum L.) fruits.
    Matsumoto H; Hanamura S; Kawakami T; Sato Y; Hirayama M
    J Agric Food Chem; 2001 Mar; 49(3):1541-5. PubMed ID: 11312893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms.
    Matsumoto H; Inaba H; Kishi M; Tominaga S; Hirayama M; Tsuda T
    J Agric Food Chem; 2001 Mar; 49(3):1546-51. PubMed ID: 11312894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthocyanin-flavanol condensation products from black currant (Ribes nigrum L.).
    McDougall GJ; Gordon S; Brennan R; Stewart D
    J Agric Food Chem; 2005 Oct; 53(20):7878-85. PubMed ID: 16190645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anthocyanins from black currants (Ribes nigrum L.).
    Slimestad R; Solheim H
    J Agric Food Chem; 2002 May; 50(11):3228-31. PubMed ID: 12009991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of anthocyanins in commercial black currant juices by simple high-performance liquid chromatography. Investigation of their pH stability and antioxidative potency.
    Nielsen IL; Haren GR; Magnussen EL; Dragsted LO; Rasmussen SE
    J Agric Food Chem; 2003 Sep; 51(20):5861-6. PubMed ID: 13129285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of clarification techniques and rat intestinal extract incubation on phenolic composition and antioxidant activity of black currant juice.
    Pinelo M; Landbo AK; Vikbjerg AF; Meyer AS
    J Agric Food Chem; 2006 Sep; 54(18):6564-71. PubMed ID: 16939310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of black currant anthocyanins on diffuser- or negative lens-induced ocular elongation in chicks.
    Iida H; Nakamura Y; Matsumoto H; Kawahata K; Koga J; Katsumi O
    J Ocul Pharmacol Ther; 2013; 29(6):604-9. PubMed ID: 23413995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction of polyphenols from processed black currant (Ribes nigrum L.) residues.
    Kapasakalidis PG; Rastall RA; Gordon MH
    J Agric Food Chem; 2006 May; 54(11):4016-21. PubMed ID: 16719528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioconversion of Cyanidin-3-Rutinoside to Cyanidin-3-Glucoside in Black Raspberry by Crude α-L-Rhamnosidase from Aspergillus Species.
    Lim T; Jung H; Hwang KT
    J Microbiol Biotechnol; 2015 Nov; 25(11):1842-8. PubMed ID: 26165319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of Anthocyanin Composition to Total Antioxidant Capacity of Berries.
    Lee SG; Vance TM; Nam TG; Kim DO; Koo SI; Chun OK
    Plant Foods Hum Nutr; 2015 Dec; 70(4):427-32. PubMed ID: 26515081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic acylation of blackcurrant (Ribes nigrum) anthocyanins and evaluation of lipophilic properties and antioxidant capacity of derivatives.
    Yang W; Kortesniemi M; Ma X; Zheng J; Yang B
    Food Chem; 2019 May; 281():189-196. PubMed ID: 30658747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorption of Anthocyanin Rutinosides after Consumption of a Blackcurrant ( Ribes nigrum L.) Extract.
    Röhrig T; Kirsch V; Schipp D; Galan J; Richling E
    J Agric Food Chem; 2019 Jun; 67(24):6792-6797. PubMed ID: 31134806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of anthocyanins from the fruits of baguaçu (Eugenia umbelliflora Berg).
    Kuskoski EM; Vega JM; Rios JJ; Fett R; Troncoso AM; Asuero AG
    J Agric Food Chem; 2003 Aug; 51(18):5450-4. PubMed ID: 12926896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and free-radical-scavenging properties of cyanidin 3-O-glycosides from the fruits of Ribes biebersteinii Berl.
    Delazar A; Khodaie L; Afshar J; Nahar L; Sarker SD
    Acta Pharm; 2010 Mar; 60(1):1-11. PubMed ID: 20228037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The conversion and deglycosylation of isoflavones and anthocyanins in black soymilk process.
    Hsiao YH; Hsieh JF
    Food Chem; 2018 Sep; 261():8-14. PubMed ID: 29739609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale isolation of high-purity anthocyanin monomers from mulberry fruits by combined chromatographic techniques.
    Chen Y; Du F; Wang W; Li Q; Zheng D; Zhang W; Zhao T; Mao G; Feng W; Wu X; Yang L
    J Sep Sci; 2017 Sep; 40(17):3506-3512. PubMed ID: 28681407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of high-purity anthocyanin mixtures and monomers from blueberries using combined chromatographic techniques.
    Wang E; Yin Y; Xu C; Liu J
    J Chromatogr A; 2014 Jan; 1327():39-48. PubMed ID: 24433700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A defined anthocyanin mixture sourced from bilberry and black currant inhibits Measles virus and various herpesviruses.
    Sivarajan R; Oberwinkler H; Roll V; König EM; Steinke M; Bodem J
    BMC Complement Med Ther; 2022 Jul; 22(1):181. PubMed ID: 35804339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochemical study of the north caucasian Rosa spinossima L. fruit.
    Novikov OO; Pisarev DI; Zhilyakova ET; Novikova MU; Bondarenko EV; Fadeeva DA; Bezmenova MD
    Bull Exp Biol Med; 2011 Dec; 152(2):216-8. PubMed ID: 22808464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthocyanins in berries of ribes including gooseberry cultivars with a high content of acylated pigments.
    Jordheim M; Måge F; Andersen ØM
    J Agric Food Chem; 2007 Jul; 55(14):5529-35. PubMed ID: 17579440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.