These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 11312928)
1. Synthesis, structure-activity relationships, and pharmacokinetic profiles of nonpeptidic difluoromethylene ketones as novel inhibitors of human chymase. Akahoshi F; Ashimori A; Sakashita H; Yoshimura T; Eda M; Imada T; Nakajima M; Mitsutomi N; Kuwahara S; Ohtsuka T; Fukaya C; Miyazaki M; Nakamura N J Med Chem; 2001 Apr; 44(8):1297-304. PubMed ID: 11312928 [TBL] [Abstract][Full Text] [Related]
2. Synthesis, structure-activity relationships, and pharmacokinetic profiles of nonpeptidic alpha-keto heterocycles as novel inhibitors of human chymase. Akahoshi F; Ashimori A; Sakashita H; Yoshimura T; Imada T; Nakajima M; Mitsutomi N; Kuwahara S; Ohtsuka T; Fukaya C; Miyazaki M; Nakamura N J Med Chem; 2001 Apr; 44(8):1286-96. PubMed ID: 11312927 [TBL] [Abstract][Full Text] [Related]
3. Non-peptidic inhibitors of human chymase. Synthesis, structure-activity relationships, and pharmacokinetic profiles of a series of 5-amino-6-oxo-1,6-dihydropyrimidine-containing trifluoromethyl ketones. Akahoshi F; Ashimori A; Yoshimura T; Imada T; Nakajima M; Mitsutomi N; Kuwahara S; Ohtsuka T; Fukaya C; Miyazaki M; Nakamura N Bioorg Med Chem; 2001 Feb; 9(2):301-15. PubMed ID: 11249123 [TBL] [Abstract][Full Text] [Related]
4. Nonpeptidic chymase inhibitors: design and structure-activity relationships of pyrimidinone derivatives based on the predicted binding mode of a peptidic inhibitor. Akahoshi F Curr Pharm Des; 2003; 9(15):1191-9. PubMed ID: 12769746 [TBL] [Abstract][Full Text] [Related]
5. Peptidyl human heart chymase inhibitors. 2. Discovery of highly selective difluoromethylene ketone derivatives with Glu at P3 site. Eda M; Ashimori A; Akahoshi F; Yoshimura T; Inoue Y; Fukaya C; Nakajima M; Fukuyama H; Imada T; Takai S; Shiota N; Miyazaki M; Nakamura N Bioorg Med Chem Lett; 1998 Apr; 8(8):919-24. PubMed ID: 9871512 [TBL] [Abstract][Full Text] [Related]
6. Peptidyl human heart chymase inhibitors. 1. Synthesis and inhibitory activity of difluoromethylene ketone derivatives bearing P' binding subsites. Eda M; Ashimori A; Akahoshi F; Yoshimura T; Inoue Y; Fukaya C; Nakajima M; Fukuyama H; Imada T; Takai S; Shiota N; Miyazaki M; Nakamura N Bioorg Med Chem Lett; 1998 Apr; 8(8):913-8. PubMed ID: 9871511 [TBL] [Abstract][Full Text] [Related]
7. Structure-activity relationship of benzo[b]thiophene-2-sulfonamide derivatives as novel human chymase inhibitors. Masaki H; Mizuno Y; Tatui A; Murakami A; Koide Y; Satoh S; Takahashi A Bioorg Med Chem Lett; 2003 Nov; 13(22):4085-8. PubMed ID: 14592513 [TBL] [Abstract][Full Text] [Related]
8. Mammalian chymotrypsin-like enzymes. Comparative reactivities of rat mast cell proteases, human and dog skin chymases, and human cathepsin G with peptide 4-nitroanilide substrates and with peptide chloromethyl ketone and sulfonyl fluoride inhibitors. Powers JC; Tanaka T; Harper JW; Minematsu Y; Barker L; Lincoln D; Crumley KV; Fraki JE; Schechter NM; Lazarus GG Biochemistry; 1985 Apr; 24(8):2048-58. PubMed ID: 3893542 [TBL] [Abstract][Full Text] [Related]
9. An orally active chymase inhibitor, BCEAB, suppresses heart chymase activity in the hamster. Takai S; Jin D; Sakaguchi M; Kirimura K; Miyazaki M Jpn J Pharmacol; 2001 May; 86(1):124-6. PubMed ID: 11430464 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and structure-activity relationships of a new class of 1-oxacephem-based human chymase inhibitors. Aoyama Y; Uenaka M; Konoike T; Iso Y; Nishitani Y; Kanda A; Naya N; Nakajima M Bioorg Med Chem Lett; 2000 Nov; 10(21):2397-401. PubMed ID: 11078187 [TBL] [Abstract][Full Text] [Related]
11. Synthesis, SAR, and X-ray structure of novel potent DPPIV inhibitors: oxadiazolyl ketones. Koo KD; Kim MJ; Kim S; Kim KH; Hong SY; Hur GC; Yim HJ; Kim GT; Han HO; Kwon OH; Kwon TS; Koh JS; Lee CS Bioorg Med Chem Lett; 2007 Aug; 17(15):4167-72. PubMed ID: 17544668 [TBL] [Abstract][Full Text] [Related]
12. Chymase: its pathophysiological roles and inhibitors. Fukami H; Okunishi H; Miyazaki M Curr Pharm Des; 1998 Dec; 4(6):439-53. PubMed ID: 10197055 [TBL] [Abstract][Full Text] [Related]
13. The 2.2 A crystal structure of human chymase in complex with succinyl-Ala-Ala-Pro-Phe-chloromethylketone: structural explanation for its dipeptidyl carboxypeptidase specificity. Pereira PJ; Wang ZM; Rubin H; Huber R; Bode W; Schechter NM; Strobl S J Mol Biol; 1999 Feb; 286(1):163-73. PubMed ID: 9931257 [TBL] [Abstract][Full Text] [Related]
14. Structure-activity relationship studies of chloromethyl ketone derivatives for selective human chymase inhibitors. Hayashi Y; Iijima K; Katada J; Kiso Y Bioorg Med Chem Lett; 2000 Feb; 10(3):199-201. PubMed ID: 10698435 [TBL] [Abstract][Full Text] [Related]
15. Application of a chymase inhibitor, NK3201, for prevention of vascular proliferation. Takai S; Miyazaki M Cardiovasc Drug Rev; 2003; 21(3):185-98. PubMed ID: 12931253 [TBL] [Abstract][Full Text] [Related]
16. Angiotensin II generation by mast cell alpha- and beta-chymases. Caughey GH; Raymond WW; Wolters PJ Biochim Biophys Acta; 2000 Jul; 1480(1-2):245-57. PubMed ID: 10899625 [TBL] [Abstract][Full Text] [Related]
20. Angiotensin II formation from ACE and chymase in human and animal hearts: methods and species considerations. Balcells E; Meng QC; Johnson WH; Oparil S; Dell'Italia LJ Am J Physiol; 1997 Oct; 273(4):H1769-74. PubMed ID: 9362242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]