BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 11312965)

  • 1. Michael addition reactions between chiral Ni(II) complex of glycine and 3-(trans-enoyl)oxazolidin-2-ones. A case of electron donor-acceptor attractive interaction-controlled face diastereoselectivity.
    Cai C; Soloshonok VA; Hruby VJ
    J Org Chem; 2001 Feb; 66(4):1339-50. PubMed ID: 11312965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Michael addition reactions between chiral equivalents of a nucleophilic glycine and (S)- or (R)-3-[(E)-enoyl]-4-phenyl-1,3-oxazolidin-2-ones as a general method for efficient preparation of beta-substituted pyroglutamic acids. Case of topographically controlled stereoselectivity.
    Soloshonok VA; Cai C; Yamada T; Ueki H; Ohfune Y; Hruby VJ
    J Am Chem Soc; 2005 Nov; 127(43):15296-303. PubMed ID: 16248672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (S)- or (R)-3-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones: ideal Michael acceptors to afford a virtually complete control of simple and face diastereoselectivity in addition reactions with glycine derivatives.
    Soloshonok VA; Cai C; Hruby VJ
    Org Lett; 2000 Mar; 2(6):747-50. PubMed ID: 10754676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational design of highly diastereoselective, organic base-catalyzed, room-temperature Michael addition reactions.
    Soloshonok VA; Cai C; Hruby VJ; Van Meervelt L; Yamazaki T
    J Org Chem; 2000 Oct; 65(20):6688-96. PubMed ID: 11052120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtually complete control of simple and face diastereoselectivity in the Michael addition reactions between achiral equivalents of a nucleophilic glycine and (S)- or (R)-3-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones: practical method for preparation of beta-substituted pyroglutamic acids and prolines.
    Soloshonok VA; Ueki H; Tiwari R; Cai C; Hruby VJ
    J Org Chem; 2004 Jul; 69(15):4984-90. PubMed ID: 15255725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, synthesis, and evaluation of a new generation of modular nucleophilic glycine equivalents for the efficient synthesis of sterically constrained alpha-amino acids.
    Ellis TK; Ueki H; Yamada T; Ohfune Y; Soloshonok VA
    J Org Chem; 2006 Oct; 71(22):8572-8. PubMed ID: 17064036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved synthesis of proline-derived Ni(II) complexes of glycine: versatile chiral equivalents of nucleophilic glycine for general asymmetric synthesis of alpha-amino acids.
    Ueki H; Ellis TK; Martin CH; Boettiger TU; Bolene SB; Soloshonok VA
    J Org Chem; 2003 Sep; 68(18):7104-7. PubMed ID: 12946159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NH-type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications.
    Bergagnini M; Fukushi K; Han J; Shibata N; Roussel C; Ellis TK; Aceña JL; Soloshonok VA
    Org Biomol Chem; 2014 Feb; 12(8):1278-91. PubMed ID: 24424805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.
    Sorochinsky AE; Aceña JL; Moriwaki H; Sato T; Soloshonok VA
    Amino Acids; 2013 Oct; 45(4):691-718. PubMed ID: 23832533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of bis-α,α'-amino acids through diastereoselective bis-alkylations of chiral Ni(II)-complexes of glycine.
    Wang J; Liu H; Aceña JL; Houck D; Takeda R; Moriwaki H; Sato T; Soloshonok VA
    Org Biomol Chem; 2013 Jul; 11(27):4508-15. PubMed ID: 23715131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric synthesis of chiral heterocyclic amino acids via the alkylation of the Ni(II) complex of glycine and alkyl halides.
    Chen H; Wang J; Zhou S; Liu H
    J Org Chem; 2014 Sep; 79(17):7872-9. PubMed ID: 25121412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient synthesis of serically constrained smmetrically alpha,alpha-disubstituted alpha-amino acids under operationally convenient conditions.
    Ellis TK; Martin CH; Tsai GM; Ueki H; Soloshonok VA
    J Org Chem; 2003 Aug; 68(16):6208-14. PubMed ID: 12895052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.
    Aceña JL; Sorochinsky AE; Soloshonok V
    Amino Acids; 2014 Sep; 46(9):2047-73. PubMed ID: 24888480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic asymmetric Michael addition of α,β-unsaturated aldehydes to Ni(II) complexes of the Schiff base of glycine.
    Luo X; Jin Z; Li P; Gao J; Yue W; Liang X; Ye J
    Org Biomol Chem; 2011 Feb; 9(3):793-801. PubMed ID: 21103550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of alpha-amino acids via asymmetric phase transfer-catalyzed alkylation of achiral nickel(II) complexes of glycine-derived Schiff bases.
    Belokon YN; Bespalova NB; Churkina TD; Císarová I; Ezernitskaya MG; Harutyunyan SR; Hrdina R; Kagan HB; Kocovský P; Kochetkov KA; Larionov OV; Lyssenko KA; North M; Polásek M; Peregudov AS; Prisyazhnyuk VV; Vyskocil S
    J Am Chem Soc; 2003 Oct; 125(42):12860-71. PubMed ID: 14558835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric synthesis of chiral 4-substituted 5,5-diethyl oxazolidin-2-ones as potential effective chiral auxiliaries.
    Li JF; Yang R; Nie L; Yang LJ; Huang R; Lin J
    J Pept Res; 2005 Dec; 66(6):319-23. PubMed ID: 16316447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid by alkylation/cyclization of newly designed axially chiral Ni(II) complex of glycine Schiff base.
    Kawashima A; Shu S; Takeda R; Kawamura A; Sato T; Moriwaki H; Wang J; Izawa K; Aceña JL; Soloshonok VA; Liu H
    Amino Acids; 2016 Apr; 48(4):973-986. PubMed ID: 26661034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids.
    Sorochinsky AE; Aceña JL; Moriwaki H; Sato T; Soloshonok V
    Amino Acids; 2013 Nov; 45(5):1017-33. PubMed ID: 24043459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric synthesis of (S)-α-(octyl)glycine via alkylation of Ni(II) complex of chiral glycine Schiff base.
    Fu B; Takeda R; Zou Y; Konno H; Moriwaki H; Abe H; Han J; Izawa K; Soloshonok VA
    Chirality; 2020 Dec; 32(12):1354-1360. PubMed ID: 33217049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereoselective functionalisation of cis- and trans-2-ferrocenyl-3-pivaloyl-4-alkyl-1,3-oxazolidin-5-ones: asymmetric synthesis of (R)- and (S)-2-alkyl-2-aminopent-4-enoic acids and (2R,3S)-2-amino-2-methyl-3-hydroxy-3-phenylpropanoic acid.
    Alonso F; Davies SG; Elend AS; Leech MA; Roberts PM; Smith AD; Thomson JE
    Org Biomol Chem; 2009 Feb; 7(3):527-36. PubMed ID: 19156319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.