BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 11313129)

  • 1. Construction of a modified mini-Tn5 luxCDABE transposon for the development of bacterial biosensors for ecotoxicity testing.
    Weitz HJ; Ritchie JM; Bailey DA; Horsburgh AM; Killham K; Glover LA
    FEMS Microbiol Lett; 2001 Apr; 197(2):159-65. PubMed ID: 11313129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs.
    Winson MK; Swift S; Hill PJ; Sims CM; Griesmayr G; Bycroft BW; Williams P; Stewart GS
    FEMS Microbiol Lett; 1998 Jun; 163(2):193-202. PubMed ID: 9673022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tn5/7-lux: a versatile tool for the identification and capture of promoters in gram-negative bacteria.
    Bruckbauer ST; Kvitko BH; Karkhoff-Schweizer RR; Schweizer HP
    BMC Microbiol; 2015 Feb; 15(1):17. PubMed ID: 25648327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a Tn5 derivative encoding bioluminescence and its introduction in Pseudomonas, Agrobacterium and Rhizobium.
    Boivin R; Chalifour FP; Dion P
    Mol Gen Genet; 1988 Jul; 213(1):50-5. PubMed ID: 2851709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mini-Tn5-derived transposon with reportable and selectable markers enables rapid generation and screening of insertional mutants in Gram-negative bacteria.
    Nazareno ES; Acharya B; Dumenyo CK
    Lett Appl Microbiol; 2021 Mar; 72(3):283-291. PubMed ID: 33098689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and use of a new vector/transposon, pLBT::mini-Tn10:lac:kan, to identify environmentally responsive genes in a marine bacterium.
    Albertson NH; Stretton S; Pongpattanakitshote S; Ostling J; Marshall KC; Goodman AE; Kjelleberg S
    FEMS Microbiol Lett; 1996 Jul; 140(2-3):287-94. PubMed ID: 8764492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenesis of Vibrio fischeri and Other Marine Bacteria Using Hyperactive Mini-Tn5 Derivatives.
    Stoudenmire JL; Black M; Fidopiastis PM; Stabb EV
    Methods Mol Biol; 2019; 2016():87-104. PubMed ID: 31197712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a novel, bioluminescence-based, fungal bioassay for toxicity testing.
    Weitz HJ; Campbell CD; Killham K
    Environ Microbiol; 2002 Jul; 4(7):422-9. PubMed ID: 12123478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of host organism, transcriptional switches and reporter mechanisms in the performance of Hg-induced biosensors.
    Harkins M; Porter AJ; Paton GI
    J Appl Microbiol; 2004; 97(6):1192-200. PubMed ID: 15546410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of a lux-modified 2,4-dichlorophenol-degrading Burkholderia sp. RASC.
    Shaw LJ; Beaton Y; Glover LA; Killham K; Meharg AA
    Environ Microbiol; 1999 Oct; 1(5):393-9. PubMed ID: 11207758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A luxCDABE-based bioluminescent bioreporter for the detection of phenol.
    Abd-El-Haleem D; Ripp S; Scott C; Sayler GS
    J Ind Microbiol Biotechnol; 2002 Nov; 29(5):233-7. PubMed ID: 12407456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatile biosensor vectors for detection and quantification of mercury.
    Hansen LH; Sørensen SJ
    FEMS Microbiol Lett; 2000 Dec; 193(1):123-7. PubMed ID: 11094290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bi-functional gfp- and gusA-containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies.
    Xi C; Lambrecht M; Vanderleyden J; Michiels J
    J Microbiol Methods; 1999 Feb; 35(1):85-92. PubMed ID: 10076635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of a modified mini-Tn5 lacZY non-antibiotic marker cassette: ecological evaluation of a lacZY marked Pseudomonas strain in the sugarbeet rhizosphere.
    Fedi S; Brazil D; Dowling DN; O'Gara F
    FEMS Microbiol Lett; 1996 Jan; 135(2-3):251-7. PubMed ID: 8595865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Gram-Negative Microbial Cell Factories Using Transposon Vectors.
    Martínez-García E; Aparicio T; de Lorenzo V; Nikel PI
    Methods Mol Biol; 2017; 1498():273-293. PubMed ID: 27709582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lux-biosensor assessment of pH effects on microbial sorption and toxicity of chlorophenols.
    Sinclair GM; Paton GI; Meharg AA; Killham K
    FEMS Microbiol Lett; 1999 May; 174(2):273-8. PubMed ID: 10339819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transposon mutagenesis of marine Vibrio spp.
    Belas R; Mileham A; Simon M; Silverman M
    J Bacteriol; 1984 Jun; 158(3):890-6. PubMed ID: 6327645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transposon Tn5 mutagenesis of pseudomonas fluorescens to isolate mutants deficient in antibacterial activity.
    Rajendran N; Jahn D; Jayaraman K; Marahiel MA
    FEMS Microbiol Lett; 1994 Jan; 115(2-3):191-6. PubMed ID: 8138133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Streamlining of a Pseudomonas putida genome using a combinatorial deletion method based on minitransposon insertion and the Flp-FRT recombination system.
    Leprince A; Janus D; de Lorenzo V; Santos VM
    Methods Mol Biol; 2012; 813():249-66. PubMed ID: 22083747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoter screening from Pseudomonas species by a promoter probe transposon and its structure.
    Hosoya H; Nakamura K; Furukawa K
    Biosci Biotechnol Biochem; 1994 Nov; 58(11):2096-8. PubMed ID: 7765602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.