BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 11313364)

  • 1. A Gal4-sigma 54 hybrid protein that functions as a potent activator of RNA polymerase II transcription in yeast.
    Chen BS; Sun ZW; Hampsey M
    J Biol Chem; 2001 Jun; 276(26):23881-7. PubMed ID: 11313364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4.
    Larschan E; Winston F
    Genes Dev; 2001 Aug; 15(15):1946-56. PubMed ID: 11485989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GCN5 dependence of chromatin remodeling and transcriptional activation by the GAL4 and VP16 activation domains in budding yeast.
    Stafford GA; Morse RH
    Mol Cell Biol; 2001 Jul; 21(14):4568-78. PubMed ID: 11416135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recruitment of TBP or TFIIB to a promoter proximal position leads to stimulation of RNA polymerase II transcription without activator proteins both in vivo and in vitro.
    Huh JR; Park JM; Kim M; Carlson BA; Hatfield DL; Lee BJ
    Biochem Biophys Res Commun; 1999 Mar; 256(1):45-51. PubMed ID: 10066420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo.
    Bhaumik SR; Green MR
    Mol Cell Biol; 2002 Nov; 22(21):7365-71. PubMed ID: 12370284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo.
    Dudley AM; Rougeulle C; Winston F
    Genes Dev; 1999 Nov; 13(22):2940-5. PubMed ID: 10580001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-dependent gene activation by the human thyroid hormone receptor.
    Anafi M; Yang YF; Barlev NA; Govindan MV; Berger SL; Butt TR; Walfish PG
    Mol Endocrinol; 2000 May; 14(5):718-32. PubMed ID: 10809234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenovirus E1A requires the yeast SAGA histone acetyltransferase complex and associates with SAGA components Gcn5 and Tra1.
    Kulesza CA; Van Buskirk HA; Cole MD; Reese JC; Smith MM; Engel DA
    Oncogene; 2002 Feb; 21(9):1411-22. PubMed ID: 11857084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Converting Escherichia coli RNA polymerase into an enhancer-responsive enzyme: role of an NH2-terminal leucine patch in sigma 54.
    Wang JT; Syed A; Hsieh M; Gralla JD
    Science; 1995 Nov; 270(5238):992-4. PubMed ID: 7481805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic evidence for the interaction of the yeast transcriptional co-activator proteins GCN5 and ADA2.
    Georgakopoulos T; Gounalaki N; Thireos G
    Mol Gen Genet; 1995 Mar; 246(6):723-8. PubMed ID: 7898440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ADA complex is a distinct histone acetyltransferase complex in Saccharomyces cerevisiae.
    Eberharter A; Sterner DE; Schieltz D; Hassan A; Yates JR; Berger SL; Workman JL
    Mol Cell Biol; 1999 Oct; 19(10):6621-31. PubMed ID: 10490601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial two-hybrid analysis of interactions between region 4 of the sigma(70) subunit of RNA polymerase and the transcriptional regulators Rsd from Escherichia coli and AlgQ from Pseudomonas aeruginosa.
    Dove SL; Hochschild A
    J Bacteriol; 2001 Nov; 183(21):6413-21. PubMed ID: 11591686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of the role of the first helix of region 4.2 of the sigma 70 subunit of Escherichia coli RNA polymerase in transcriptional activation by activator protein PhoB.
    Kim SK; Makino K; Amemura M; Nakata A; Shinagawa H
    Mol Gen Genet; 1995 Jul; 248(1):1-8. PubMed ID: 7651320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly conserved domain of RNA polymerase II shares a functional element with acidic activation domains of upstream transcription factors.
    Xiao H; Friesen JD; Lis JT
    Mol Cell Biol; 1994 Nov; 14(11):7507-16. PubMed ID: 7935466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architectural transcription factors and the SAGA complex function in parallel pathways to activate transcription.
    Yu Y; Eriksson P; Stillman DJ
    Mol Cell Biol; 2000 Apr; 20(7):2350-7. PubMed ID: 10713159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The coactivator p/CIP/SRC-3 facilitates retinoic acid receptor signaling via recruitment of GCN5.
    Brown K; Chen Y; Underhill TM; Mymryk JS; Torchia J
    J Biol Chem; 2003 Oct; 278(41):39402-12. PubMed ID: 12885766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene activation by recruitment of the RNA polymerase II holoenzyme.
    Farrell S; Simkovich N; Wu Y; Barberis A; Ptashne M
    Genes Dev; 1996 Sep; 10(18):2359-67. PubMed ID: 8824594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different upstream transcriptional activators have distinct coactivator requirements.
    Lee DK; Kim S; Lis JT
    Genes Dev; 1999 Nov; 13(22):2934-9. PubMed ID: 10580000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redundant roles for the TFIID and SAGA complexes in global transcription.
    Lee TI; Causton HC; Holstege FC; Shen WC; Hannett N; Jennings EG; Winston F; Green MR; Young RA
    Nature; 2000 Jun; 405(6787):701-4. PubMed ID: 10864329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SAGA is an essential in vivo target of the yeast acidic activator Gal4p.
    Bhaumik SR; Green MR
    Genes Dev; 2001 Aug; 15(15):1935-45. PubMed ID: 11485988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.