BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 11313700)

  • 61. Detection of programmed cell death using fluorescence energy transfer.
    Xu X; Gerard AL; Huang BC; Anderson DC; Payan DG; Luo Y
    Nucleic Acids Res; 1998 Apr; 26(8):2034-5. PubMed ID: 9518501
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comprehensive studies on subcellular localizations and cell death-inducing activities of eight GFP-tagged apoptosis-related caspases.
    Shikama Y; U M; Miyashita T; Yamada M
    Exp Cell Res; 2001 Apr; 264(2):315-25. PubMed ID: 11262188
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Rhodamine 110-linked amino acids and peptides as substrates to measure caspase activity upon apoptosis induction in intact cells.
    Hug H; Los M; Hirt W; Debatin KM
    Biochemistry; 1999 Oct; 38(42):13906-11. PubMed ID: 10529236
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Visualization of caspase-3-like activity in cells using a genetically encoded fluorescent biosensor activated by protein cleavage.
    Zhang J; Wang X; Cui W; Wang W; Zhang H; Liu L; Zhang Z; Li Z; Ying G; Zhang N; Li B
    Nat Commun; 2013; 4():2157. PubMed ID: 23857461
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Large-scale expression in Escherichia coli and efficient purification of precursor and active caspase-7 by introduction of thrombin cleavage sites.
    Lee YM; Kang HJ; Jang M; Kim M; Bae KH; Chung SJ
    Protein Expr Purif; 2010 Jan; 69(1):29-33. PubMed ID: 19782754
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Measuring caspase activity in vivo.
    Nicholls SB; Hyman BT
    Methods Enzymol; 2014; 544():251-69. PubMed ID: 24974293
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Simultaneous real-time detection of initiator- and effector-caspase activation by double fluorescence resonance energy transfer analysis.
    Kawai H; Suzuki T; Kobayashi T; Sakurai H; Ohata H; Honda K; Momose K; Namekata I; Tanaka H; Shigenobu K; Nakamura R; Hayakawa T; Kawanishi T
    J Pharmacol Sci; 2005 Mar; 97(3):361-8. PubMed ID: 15750288
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Granulysin induces cell death with nuclear accumulation.
    Takamori Y; Ogawa K; Nagata K; Takano S; Nakamura M
    J Med Dent Sci; 2005 Mar; 52(1):1-7. PubMed ID: 15868735
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Depolarization after resonance energy transfer (DARET): a sensitive fluorescence-based assay for botulinum neurotoxin protease activity.
    Gilmore MA; Williams D; Okawa Y; Holguin B; James NG; Ross JA; Roger Aoki K; Jameson DM; Steward LE
    Anal Biochem; 2011 Jun; 413(1):36-42. PubMed ID: 21300022
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Segregation of nucleolar components coincides with caspase-3 activation in cisplatin-treated HeLa cells.
    Horky M; Wurzer G; Kotala V; Anton M; Vojtĕsek B; Vácha J; Wesierska-Gadek J
    J Cell Sci; 2001 Feb; 114(Pt 4):663-70. PubMed ID: 11171371
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Single-cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. Role of caspase-3.
    Rehm M; Dussmann H; Janicke RU; Tavare JM; Kogel D; Prehn JH
    J Biol Chem; 2002 Jul; 277(27):24506-14. PubMed ID: 11964393
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Real-time detection of caspase-2 activation in a single living HeLa cell during cisplatin-induced apoptosis.
    Lin J; Zhang Z; Yang J; Zeng S; Liu BF; Luo Q
    J Biomed Opt; 2006; 11(2):024011. PubMed ID: 16674201
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Real-time detection of caspase-3-like protease activation in vivo using fluorescence resonance energy transfer during plant programmed cell death induced by ultraviolet C overexposure.
    Zhang L; Xu Q; Xing D; Gao C; Xiong H
    Plant Physiol; 2009 Aug; 150(4):1773-83. PubMed ID: 19535476
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Activation of caspase-3 alone is insufficient for apoptotic morphological changes in human neuroblastoma cells.
    Racke MM; Mosior M; Kovacevic S; Chang CH; Glasebrook AL; Roehm NW; Na S
    J Neurochem; 2002 Mar; 80(6):1039-48. PubMed ID: 11953454
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Assaying caspase activity in vitro.
    McStay GP; Green DR
    Cold Spring Harb Protoc; 2014 Jul; 2014(7):774-7. PubMed ID: 24987140
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Caspase substrates: easily caught in deep waters?
    Demon D; Van Damme P; Vanden Berghe T; Vandekerckhove J; Declercq W; Gevaert K; Vandenabeele P
    Trends Biotechnol; 2009 Dec; 27(12):680-8. PubMed ID: 19879007
    [TBL] [Abstract][Full Text] [Related]  

  • 77. In Vitro Use of Peptide Based Substrates and Inhibitors of Apoptotic Caspases.
    McStay GP
    Methods Mol Biol; 2016; 1419():57-67. PubMed ID: 27108431
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Development of a protease activity assay using heat-sensitive Tus-GFP fusion protein substrates.
    Askin SP; Morin I; Schaeffer PM
    Anal Biochem; 2011 Aug; 415(2):126-33. PubMed ID: 21570945
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Caspase-3 mediated cleavage of HsRad51 at an unconventional site.
    Flygare J; Hellgren D; Wennborg A
    Eur J Biochem; 2000 Oct; 267(19):5977-82. PubMed ID: 10998058
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Simultaneous imaging of initiator/effector caspase activity and mitochondrial membrane potential during cell death in living HeLa cells.
    Kawai H; Suzuki T; Kobayashi T; Mizuguchi H; Hayakawa T; Kawanishi T
    Biochim Biophys Acta; 2004 Aug; 1693(2):101-10. PubMed ID: 15313012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.