BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11315115)

  • 1. Intact soil-core microcosms compared with multi-site field releases for pre-release testing of microbes in diverse soils and climates.
    Gagliardi JV; Angle JS; Germida JJ; Wyndham RC; Chanway CP; Watson RJ; Greer CW; McIntyre T; Yu HH; Levin MA; Russek-Cohen E; Rosolen S; Nairn J; Seib A; Martin-Heller T; Wisse G
    Can J Microbiol; 2001 Mar; 47(3):237-52. PubMed ID: 11315115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting survival of a genetically engineered microorganism, Pseudomonas chlororaphis 3732RN-L11, in soil and wheat rhizosphere across Canada with linear multiple regression models.
    Edge TA; Wyndham RC
    Can J Microbiol; 2002 Aug; 48(8):717-27. PubMed ID: 12381028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field and soil microcosm studies on the survival and conjugation of a Pseudomonas putida strain bearing a recombinant plasmid, pADPTel.
    Hirkala DL; Germida JJ
    Can J Microbiol; 2004 Aug; 50(8):595-604. PubMed ID: 15467785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of soil factors on root colonization of wheat by luxAB genes-marked Pseudomonas fluorescens Xl6L2].
    Wang P; Hu Z; Li F
    Wei Sheng Wu Xue Bao; 2000 Jun; 40(3):312-7. PubMed ID: 12548998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of a genetically engineered Pseudomonas fluorescens strain through a soil microcosm.
    Trevors JT; van Elsas JD; van Overbeek LS; Starodub ME
    Appl Environ Microbiol; 1990 Feb; 56(2):401-8. PubMed ID: 2106286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field calibration of soil-core microcosms: Ecosystem structural and functional comparisons.
    Bolton H; Fredrickson JK; Thomas JM; Li SM; Workman DJ; Bentjen SA; Smith JL
    Microb Ecol; 1991 Dec; 21(1):175-89. PubMed ID: 24194209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of Microcosms for Examining the Survival of Pseudomonas aureofaciens (lacZY) in Soil.
    Angle JS; Levin MA; Gagliardi JV; McIntosh MS
    Appl Environ Microbiol; 1995 Aug; 61(8):2835-9. PubMed ID: 16535091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fate of a genetically modified Pseudomonas strain and its transgene during the composting of poultry manure.
    Guan J; Spencer JL; Sampath M; Devenish J
    Can J Microbiol; 2004 Jun; 50(6):415-21. PubMed ID: 15284887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcosm study for revegetation of barren land with wild plants by some plant growth-promoting rhizobacteria.
    Ahn TS; Ka JO; Lee GH; Song HG
    J Microbiol Biotechnol; 2007 Jan; 17(1):52-7. PubMed ID: 18051353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas aureofaciens in soil: survival and recovery efficiency.
    Angle JS; Levin MA; Gagliardi JV; McIntosh MS; Glew JG
    Microb Releases; 1994 Jul; 2(4):247-54. PubMed ID: 7921353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi.
    Fischer SE; Jofré EC; Cordero PV; Gutiérrez Mañero FJ; Mori GB
    Antonie Van Leeuwenhoek; 2010 Mar; 97(3):241-51. PubMed ID: 20020326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation tillage and organic farming induce minor variations in Pseudomonas abundance, their antimicrobial function and soil disease resistance.
    Dennert F; Imperiali N; Staub C; Schneider J; Laessle T; Zhang T; Wittwer R; van der Heijden MGA; Smits THM; Schlaeppi K; Keel C; Maurhofer M
    FEMS Microbiol Ecol; 2018 Aug; 94(8):. PubMed ID: 29701793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survival of and wheat-root colonization by alginate encapsulated Herbaspirillum spp.
    el-Komy HM
    Folia Microbiol (Praha); 2001; 46(1):25-30. PubMed ID: 11501470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nematode-enhanced microbial colonization of the wheat rhizosphere.
    Knox OG; Killham K; Mullins CE; Wilson MJ
    FEMS Microbiol Lett; 2003 Aug; 225(2):227-33. PubMed ID: 12951246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic biotransformation of octylphenol polyethoxylate surfactant in soil microcosms.
    Chen HJ; Huang SL; Tseng DH
    Environ Technol; 2004 Feb; 25(2):201-10. PubMed ID: 15116878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field calibration of soil-core microcosms: Fate of a genetically altered rhizobacterium.
    Bolton H; Fredrickson JK; Bentjen SA; Workman DJ; Li SM; Thomas JM
    Microb Ecol; 1991 Dec; 21(1):163-73. PubMed ID: 24194208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica.
    Stallwood B; Shears J; Williams PA; Hughes KA
    J Appl Microbiol; 2005; 99(4):794-802. PubMed ID: 16162230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccumulation and toxicity of copper in outdoor freshwater microcosms.
    Hoang TC; Pryor RL; Rand GM; Frakes RA
    Ecotoxicol Environ Saf; 2011 May; 74(4):1011-20. PubMed ID: 21345490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of fumigants on microbial diversity and persistence of E. coli O15:H7 in contrasting soil microcosms.
    Ibekwe AM; Ma J
    Sci Total Environ; 2011 Sep; 409(19):3740-8. PubMed ID: 21757224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intact soil-core microcosm method to evaluate the survival and vertical dispersal of Trichoderma atroviride SC1.
    Longa CM; Pertot I
    Lett Appl Microbiol; 2009 Nov; 49(5):609-14. PubMed ID: 19780964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.