These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 11316235)

  • 1. A globally convergent Lagrange and barrier function iterative algorithm for the traveling salesman problem.
    Dang C; Xu L
    Neural Netw; 2001 Mar; 14(2):217-30. PubMed ID: 11316235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Lagrange multiplier and Hopfield-type barrier function method for the traveling salesman problem.
    Dang C; Xu L
    Neural Comput; 2002 Feb; 14(2):303-24. PubMed ID: 11802914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deterministic annealing algorithm for approximating a solution of the linearly constrained nonconvex quadratic minimization problem.
    Dang C; Liang J; Yang Y
    Neural Netw; 2013 Mar; 39():1-11. PubMed ID: 23296021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deterministic annealing algorithm for the minimum concave cost network flow problem.
    Dang C; Sun Y; Wang Y; Yang Y
    Neural Netw; 2011 Sep; 24(7):699-708. PubMed ID: 21482456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approximating a solution of the s-t max-cut problem with a deterministic annealing algorithm.
    Dang C
    Neural Netw; 2000 Sep; 13(7):801-10. PubMed ID: 11152210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deterministic annealing algorithm for approximating a solution of the max-bisection problem.
    Dang C; He L; Hui IK
    Neural Netw; 2002 Apr; 15(3):441-58. PubMed ID: 12125896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An approximation algorithm for graph partitioning via deterministic annealing neural network.
    Wu Z; Karimi HR; Dang C
    Neural Netw; 2019 Sep; 117():191-200. PubMed ID: 31174047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deterministic annealing algorithm for approximating a solution of the min-bisection problem.
    Dang C; Ma W; Liang J
    Neural Netw; 2009 Jan; 22(1):58-66. PubMed ID: 18995985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving the TSP by the AALHNN algorithm.
    Hu Y; Duan Q
    Math Biosci Eng; 2022 Jan; 19(4):3427-3448. PubMed ID: 35341258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Deterministic Annealing Neural Network Algorithm for the Minimum Concave Cost Transportation Problem.
    Wu Z; Karimi HR; Dang C
    IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):4354-4366. PubMed ID: 31869806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 16QAM blind equalization via maximum entropy density approximation technique and nonlinear Lagrange multipliers.
    Mauda R; Pinchas M
    ScientificWorldJournal; 2014; 2014():548714. PubMed ID: 24723813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of the pseudo-inverse method as a constrained static optimization for musculo-tendon forces prediction.
    Moissenet F; Chèze L; Dumas R
    J Biomech Eng; 2012 Jun; 134(6):064503. PubMed ID: 22757507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient convex-elastic net algorithm to solve the Euclidean traveling salesman problem.
    Al-Mulhem M; Al-Maghrabi T
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(4):618-20. PubMed ID: 18255981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solving Stochastic Reaction Networks with Maximum Entropy Lagrange Multipliers.
    Vlysidis M; Kaznessis YN
    Entropy (Basel); 2018 Sep; 20(9):. PubMed ID: 33265789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On approximating a new generalization of traveling salesman problem.
    Huang Z; Liao X; Naik PA; Lu X
    Heliyon; 2024 May; 10(10):e31297. PubMed ID: 38818174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The generalized quadratic knapsack problem. A neuronal network approach.
    Talaván PM; Yáñez J
    Neural Netw; 2006 May; 19(4):416-28. PubMed ID: 16488117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A scalable projective scaling algorithm for l(p) loss with convex penalizations.
    Zhou H; Cheng Q
    IEEE Trans Neural Netw Learn Syst; 2015 Feb; 26(2):265-76. PubMed ID: 25608289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-phase algorithm for the pollution traveling Salesman problem.
    García-Vasquez K; Linfati R; Escobar JW
    Heliyon; 2024 May; 10(9):e29958. PubMed ID: 38694131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solving Traveling Salesman Problems Based on Artificial Cooperative Search Algorithm.
    Liu G; Xu X; Wang F; Tang Y
    Comput Intell Neurosci; 2022; 2022():1008617. PubMed ID: 35463281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient constraint handling in electromagnetism-like algorithm for traveling salesman problem with time windows.
    Yurtkuran A; Emel E
    ScientificWorldJournal; 2014; 2014():871242. PubMed ID: 24723834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.