BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 11316257)

  • 1. Voltage-gated sodium channel (SkM1) content in dystrophin-deficient muscle.
    Ribaux P; Bleicher F; Couble ML; Amsellem J; Cohen SA; Berthier C; Blaineau S
    Pflugers Arch; 2001 Mar; 441(6):746-55. PubMed ID: 11316257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term clenbuterol administration alters the isometric contractile properties of skeletal muscle from normal and dystrophin-deficient mdx mice.
    Hayes A; Williams DA
    Clin Exp Pharmacol Physiol; 1994 Oct; 21(10):757-65. PubMed ID: 7867226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential expression of myosin heavy chain isoforms in the masticatory muscles of dystrophin-deficient mice.
    Spassov A; Gredes T; Gedrange T; Lucke S; Morgenstern S; Pavlovic D; Kunert-Keil C
    Eur J Orthod; 2011 Dec; 33(6):613-9. PubMed ID: 21187529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and localization of protein inhibitor of neuronal nitric oxide synthase in Duchenne muscular dystrophy.
    Guo Y; Petrof BJ; Hussain SN
    Muscle Nerve; 2001 Nov; 24(11):1468-75. PubMed ID: 11745948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nav1.4 deregulation in dystrophic skeletal muscle leads to Na+ overload and enhanced cell death.
    Hirn C; Shapovalov G; Petermann O; Roulet E; Ruegg UT
    J Gen Physiol; 2008 Aug; 132(2):199-208. PubMed ID: 18625851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dystrophin-negative slow-twitch soleus muscles are not susceptible to eccentric contraction induced injury over the lifespan of the
    Kiriaev L; Kueh S; Morley JW; Houweling PJ; Chan S; North KN; Head SI
    Am J Physiol Cell Physiol; 2021 Oct; 321(4):C704-C720. PubMed ID: 34432537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient receptor potential cation channels in normal and dystrophic mdx muscle.
    Krüger J; Kunert-Keil C; Bisping F; Brinkmeier H
    Neuromuscul Disord; 2008 Jun; 18(6):501-13. PubMed ID: 18504127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.
    Divet A; Huchet-Cadiou C
    Pflugers Arch; 2002 Aug; 444(5):634-43. PubMed ID: 12194017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential distribution of dystrophin and beta-spectrin at the sarcolemma of fast twitch skeletal muscle fibers.
    Williams MW; Bloch RJ
    J Muscle Res Cell Motil; 1999 May; 20(4):383-93. PubMed ID: 10531619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aquaporin 4 mRNA levels in neuromuscular tissues of wild-type and dystrophin-deficient mice.
    Shibuya S; Hara H; Wakayama Y; Inoue M; Jimi T; Matsuzaki Y
    Tohoku J Exp Med; 2008 Aug; 215(4):313-9. PubMed ID: 18679005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of Dp427-deficient mdx tissues shows that the milder dystrophic phenotype of extraocular and toe muscle fibres is associated with a persistent expression of beta-dystroglycan.
    Dowling P; Lohan J; Ohlendieck K
    Eur J Cell Biol; 2003 May; 82(5):222-30. PubMed ID: 12800977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute pathophysiological effects of muscle-expressed Dp71 transgene on normal and dystrophic mouse muscle.
    Wieneke S; Heimann P; Leibovitz S; Nudel U; Jockusch H
    J Appl Physiol (1985); 2003 Nov; 95(5):1861-6. PubMed ID: 14555666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extensive but coordinated reorganization of the membrane skeleton in myofibers of dystrophic (mdx) mice.
    Williams MW; Bloch RJ
    J Cell Biol; 1999 Mar; 144(6):1259-70. PubMed ID: 10087268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of aquaporin-4 in fast-twitch fibers of mammalian skeletal muscle.
    Frigeri A; Nicchia GP; Verbavatz JM; Valenti G; Svelto M
    J Clin Invest; 1998 Aug; 102(4):695-703. PubMed ID: 9710437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers.
    Vandebrouck C; Martin D; Colson-Van Schoor M; Debaix H; Gailly P
    J Cell Biol; 2002 Sep; 158(6):1089-96. PubMed ID: 12235126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aquaporin-4 deficiency in skeletal muscle and brain of dystrophic mdx mice.
    Frigeri A; Nicchia GP; Nico B; Quondamatteo F; Herken R; Roncali L; Svelto M
    FASEB J; 2001 Jan; 15(1):90-98. PubMed ID: 11149896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rescue of dystrophin expression in mdx mouse muscle by RNA/DNA oligonucleotides.
    Rando TA; Disatnik MH; Zhou LZ
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5363-8. PubMed ID: 10805797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sarcolemma in the Large(myd) mouse.
    Reed PW; Mathews KD; Mills KA; Bloch RJ
    Muscle Nerve; 2004 Nov; 30(5):585-95. PubMed ID: 15389724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of the sarcolemma-enriched fraction from dystrophic mdx-4cv skeletal muscle.
    Murphy S; Zweyer M; Henry M; Meleady P; Mundegar RR; Swandulla D; Ohlendieck K
    J Proteomics; 2019 Jan; 191():212-227. PubMed ID: 29408692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dystrophin involved in the susceptibility of slow muscles to hindlimb unloading via concomitant activation of TGF-β1/Smad3 signaling and ubiquitin-proteasome degradation in mice.
    Zhang P; Li W; Liu H; Li J; Wang J; Li Y; Chen X; Yang Z; Fan M
    Cell Biochem Biophys; 2014 Nov; 70(2):1057-67. PubMed ID: 24839113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.