These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 11316465)
1. Inhibition of spontaneous induction of lambdoid prophages in Escherichia coli cultures: simple procedures with possible biotechnological applications. Czyz A; Los M; Wrobel B; Wegrzyn G BMC Biotechnol; 2001; 1():1. PubMed ID: 11316465 [TBL] [Abstract][Full Text] [Related]
2. Stability and gene strand bias of lambda prophages and chromosome organization in Li X; Gallardo O; August E; Dassa B; Court DL; Stavans J; Arbel-Goren R mBio; 2024 Jul; 15(7):e0207823. PubMed ID: 38888367 [TBL] [Abstract][Full Text] [Related]
3. Yet another way that phage λ manipulates its Escherichia coli host: λrexB is involved in the lysogenic-lytic switch. Engelberg-Kulka H; Kumar S Mol Microbiol; 2015 May; 96(4):689-93. PubMed ID: 25684601 [TBL] [Abstract][Full Text] [Related]
4. Role of the lytic repressor in prophage induction of phage lambda as analyzed by a module-replacement approach. Atsumi S; Little JW Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4558-63. PubMed ID: 16537413 [TBL] [Abstract][Full Text] [Related]
5. Different expression patterns of genes from the exo-xis region of bacteriophage λ and Shiga toxin-converting bacteriophage Ф24B following infection or prophage induction in Escherichia coli. Bloch S; Nejman-Faleńczyk B; Dydecka A; Łoś JM; Felczykowska A; Węgrzyn A; Węgrzyn G PLoS One; 2014; 9(10):e108233. PubMed ID: 25310402 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms that Determine the Differential Stability of Stx⁺ and Stx(-) Lysogens. Colon MP; Chakraborty D; Pevzner Y; Koudelka GB Toxins (Basel); 2016 Mar; 8(4):96. PubMed ID: 27043626 [TBL] [Abstract][Full Text] [Related]
7. Differential efficiency of induction of various lambdoid prophages responsible for production of Shiga toxins in response to different induction agents. Loś JM; Loś M; Wegrzyn G; Wegrzyn A Microb Pathog; 2009 Dec; 47(6):289-98. PubMed ID: 19761828 [TBL] [Abstract][Full Text] [Related]
8. Bacteriophage crosstalk: coordination of prophage induction by trans-acting antirepressors. Lemire S; Figueroa-Bossi N; Bossi L PLoS Genet; 2011 Jun; 7(6):e1002149. PubMed ID: 21731505 [TBL] [Abstract][Full Text] [Related]
9. Influence of the Escherichia coli oxyR gene function on lambda prophage maintenance. Glinkowska M; Loś JM; Szambowska A; Czyz A; Całkiewicz J; Herman-Antosiewicz A; Wróbel B; Wegrzyn G; Wegrzyn A; Loś M Arch Microbiol; 2010 Aug; 192(8):673-83. PubMed ID: 20559623 [TBL] [Abstract][Full Text] [Related]
10. Cryptic-Prophage-Encoded Small Protein DicB Protects Ragunathan PT; Vanderpool CK J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31527115 [TBL] [Abstract][Full Text] [Related]
11. Induction and Elimination of Prophages Using CRISPR Interference. Cornuault JK; Moineau S CRISPR J; 2021 Aug; 4(4):549-557. PubMed ID: 34406037 [TBL] [Abstract][Full Text] [Related]
12. The CI repressors of Shiga toxin-converting prophages are involved in coinfection of Escherichia coli strains, which causes a down regulation in the production of Shiga toxin 2. Serra-Moreno R; Jofre J; Muniesa M J Bacteriol; 2008 Jul; 190(13):4722-35. PubMed ID: 18469095 [TBL] [Abstract][Full Text] [Related]
13. Genomic Sequencing of High-Efficiency Transducing Streptococcal Bacteriophage A25: Consequences of Escape from Lysogeny. McCullor K; Postoak B; Rahman M; King C; McShan WM J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30224437 [TBL] [Abstract][Full Text] [Related]
14. Interplay between the temperate phages PY54 and N15, linear plasmid prophages with covalently closed ends. Hammerl JA; Klein I; Appel B; Hertwig S J Bacteriol; 2007 Nov; 189(22):8366-70. PubMed ID: 17827299 [TBL] [Abstract][Full Text] [Related]
15. A fast and reliable method for monitoring of prophage-activating chemicals. Xu J; Kiesel B; Kallies R; Jiang FL; Liu Y; Maskow T Microb Biotechnol; 2018 Nov; 11(6):1112-1120. PubMed ID: 29327434 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157:H7. Loś JM; Loś M; Wegrzyn A; Wegrzyn G FEMS Immunol Med Microbiol; 2010 Apr; 58(3):322-9. PubMed ID: 20070366 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the lambdoid prophage element e14 in the E. coli K-12 genome. Mehta P; Casjens S; Krishnaswamy S BMC Microbiol; 2004 Jan; 4():4. PubMed ID: 14733619 [TBL] [Abstract][Full Text] [Related]
18. Phages Mediate Bacterial Self-Recognition. Song S; Guo Y; Kim JS; Wang X; Wood TK Cell Rep; 2019 Apr; 27(3):737-749.e4. PubMed ID: 30995473 [TBL] [Abstract][Full Text] [Related]
19. Plasmids derived from Gifsy-1/Gifsy-2, lambdoid prophages contributing to the virulence of Salmonella enterica serovar Typhimurium: implications for the evolution of replication initiation proteins of lambdoid phages and enterobacteria. Słomiński B; Całkiewicz J; Golec P; Węgrzyn G; Wróbel B Microbiology (Reading); 2007 Jun; 153(Pt 6):1884-1896. PubMed ID: 17526845 [TBL] [Abstract][Full Text] [Related]
20. Purification and characterization of the repressor of the shiga toxin-encoding bacteriophage 933W: DNA binding, gene regulation, and autocleavage. Koudelka AP; Hufnagel LA; Koudelka GB J Bacteriol; 2004 Nov; 186(22):7659-69. PubMed ID: 15516580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]