BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11316537)

  • 1. Absence of spinal response to extracorporeal shock waves on the endogenous opioid systems in the rat.
    Haake M; Thon A; Bette M
    Ultrasound Med Biol; 2001 Feb; 27(2):279-84. PubMed ID: 11316537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No influence of low-energy extracorporeal shock wave therapy (ESWT) on spinal nociceptive systems.
    Haake M; Thon A; Bette M
    J Orthop Sci; 2002; 7(1):97-101. PubMed ID: 11819140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of ovarian sex steroids on spinal methionine-enkephalin release: comparison with dynorphin reveals asymmetrical regulation.
    Gupta DS; Gintzler AR
    J Pharmacol Exp Ther; 2003 Feb; 304(2):738-44. PubMed ID: 12538829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered opioid-mediated control of the spinal release of dynorphin and met-enkephalin in polyarthritic rats.
    Ballet S; Mauborgne A; Hamon M; Cesselin F; Collin E
    Synapse; 2000 Sep; 37(4):262-72. PubMed ID: 10891863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal cord dynorphin may modulate nociception via a kappa-opioid receptor in chronic arthritic rats.
    Millan MJ; Millan MH; Pilcher CW; Członkowski A; Herz A; Colpaert FC
    Brain Res; 1985 Aug; 340(1):156-9. PubMed ID: 2862957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal cord dynorphin: positive region-specific modulation during pregnancy and parturition.
    Medina VM; Wang L; Gintzler AR
    Brain Res; 1993 Sep; 623(1):41-6. PubMed ID: 8106119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.
    Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E
    J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methionine-enkephalin-and Dynorphin A-release from immune cells and control of inflammatory pain.
    Cabot PJ; Carter L; Schäfer M; Stein C
    Pain; 2001 Sep; 93(3):207-212. PubMed ID: 11514079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of chronic stress on multiple opioid peptide systems in the rat: pronounced effects upon dynorphin in spinal cord.
    Przewlocki R; Lasoń W; Höllt V; Silberring J; Herz A
    Brain Res; 1987 Jun; 413(2):213-9. PubMed ID: 2886190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central changes in nociceptin dynorphin B and Met-enkephalin-Arg-Phe in different models of nociception.
    Rosén A; Lundeberg T; Bytner B; Nylander I
    Brain Res; 2000 Feb; 857(1-2):212-8. PubMed ID: 10700570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased neuropeptide content in the spinal cord of aged rats: the effect of GM1 ganglioside.
    Goettl VM; Tejwani GA; Neff NH; Hadjiconstantinou M
    Neuroreport; 1999 Feb; 10(3):513-6. PubMed ID: 10208581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple opioid peptides and the modulation of pain: immunohistochemical analysis of dynorphin and enkephalin in the trigeminal nucleus caudalis and spinal cord of the cat.
    Cruz L; Basbaum AI
    J Comp Neurol; 1985 Oct; 240(4):331-48. PubMed ID: 2907522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration in endogenous opioid systems due to chronic inflammatory pain conditions.
    Spetea M; Rydelius G; Nylander I; Ahmed M; Bileviciute-Ljungar I; Lundeberg T; Svensson S; Kreicbergs A
    Eur J Pharmacol; 2002 Jan; 435(2-3):245-52. PubMed ID: 11821033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of met-enkephalin, dynorphin A, and neurotensin immunoreactive neurons in the cat and rat spinal cords: II. Segmental differences in the marginal zone.
    Miller KE; Seybold VS
    J Comp Neurol; 1989 Jan; 279(4):619-28. PubMed ID: 2563738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unchanged c-Fos expression after extracorporeal shock wave therapy: an experimental investigation in rats.
    Haake M; Thon A; Bette M
    Arch Orthop Trauma Surg; 2002 Dec; 122(9-10):518-21. PubMed ID: 12483333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of dynorphin A(1-8) to [Leu5]-enkephalin in rat central nervous tissue during development.
    Dixon DM; Traynor JR
    Neuropeptides; 1993 Aug; 25(2):121-5. PubMed ID: 8105413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of met-enkephalin-, dynorphin A-, and neurotensin-immunoreactive neurons in the cat and rat spinal cords: I. Lumbar cord.
    Miller KE; Seybold VS
    J Comp Neurol; 1987 Jan; 255(2):293-304. PubMed ID: 2880879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antagonism of nitrous oxide antinociception in mice by intrathecally administered antisera to endogenous opioid peptides.
    Cahill FJ; Ellenberger EA; Mueller JL; Tseng LF; Quock RM
    J Biomed Sci; 2000; 7(4):299-303. PubMed ID: 10895052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid chromatography-electrospray linear ion trap mass spectrometry analysis of targeted neuropeptides in Tac1(-/-) mouse spinal cords reveals significant lower concentration of opioid peptides.
    Saidi M; Beaudry F
    Neuropeptides; 2015 Aug; 52():79-87. PubMed ID: 26072188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prodynorphin gene expression in spinal cord is enhanced after traumatic injury in the rat.
    Przewłocki R; Haarmann I; Nikolarakis K; Herz A; Höllt V
    Brain Res; 1988 Aug; 464(1):37-41. PubMed ID: 2460195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.