These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

682 related articles for article (PubMed ID: 11317120)

  • 1. Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion.
    Lim TH; Kwon H; Jeon CH; Kim JG; Sokolowski M; Natarajan R; An HS; Andersson GB
    Spine (Phila Pa 1976); 2001 Apr; 26(8):951-6. PubMed ID: 11317120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of ProDisc-C failure strength with cervical bone mineral content and endplate strength.
    Zhang X; Ordway NR; Tan R; Rim BC; Fayyazi AH
    J Spinal Disord Tech; 2008 Aug; 21(6):400-5. PubMed ID: 18679093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density.
    Hasegawa K; Abe M; Washio T; Hara T
    Spine (Phila Pa 1976); 2001 Apr; 26(8):957-63. PubMed ID: 11317121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure of human cervical endplates: a cadaveric experimental model.
    Truumees E; Demetropoulos CK; Yang KH; Herkowitz HN
    Spine (Phila Pa 1976); 2003 Oct; 28(19):2204-8. PubMed ID: 14520032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on the structural properties of the lumbar endplate: histological structure, the effect of bone density, and spinal level.
    Hou Y; Luo Z
    Spine (Phila Pa 1976); 2009 May; 34(12):E427-33. PubMed ID: 19454994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of cervical endplate strength with CT measured subchondral bone density.
    Ordway NR; Lu YM; Zhang X; Cheng CC; Fang H; Fayyazi AH
    Eur Spine J; 2007 Dec; 16(12):2104-9. PubMed ID: 17712574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support.
    Lowe TG; Hashim S; Wilson LA; O'Brien MF; Smith DA; Diekmann MJ; Trommeter J
    Spine (Phila Pa 1976); 2004 Nov; 29(21):2389-94. PubMed ID: 15507800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical analysis of thoracolumbar interbody constructs. How important is the endplate?
    Hollowell JP; Vollmer DG; Wilson CR; Pintar FA; Yoganandan N
    Spine (Phila Pa 1976); 1996 May; 21(9):1032-6. PubMed ID: 8724086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of vertebroplasty on endplate subsidence in elderly female spines.
    Nagaraja S; Awada HK; Dreher ML; Bouck JT; Gupta S
    J Neurosurg Spine; 2015 Mar; 22(3):273-82. PubMed ID: 25525963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can an Endplate-conformed Cervical Cage Provide a Better Biomechanical Environment than a Typical Non-conformed Cage?: A Finite Element Model and Cadaver Study.
    Zhang F; Xu HC; Yin B; Xia XL; Ma XS; Wang HL; Yin J; Shao MH; Lyu FZ; Jiang JY
    Orthop Surg; 2016 Aug; 8(3):367-76. PubMed ID: 27627721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of cervical endplate integrity following minimal surface preparation.
    Cheng CC; Ordway NR; Zhang X; Lu YM; Fang H; Fayyazi AH
    Spine (Phila Pa 1976); 2007 Aug; 32(17):1852-5. PubMed ID: 17762292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution of mineral density in the cervical vertebral endplates.
    Müller-Gerbl M; Weißer S; Linsenmeier U
    Eur Spine J; 2008 Mar; 17(3):432-438. PubMed ID: 18193299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs.
    Steffen T; Tsantrizos A; Aebi M
    Spine (Phila Pa 1976); 2000 May; 25(9):1077-84. PubMed ID: 10788851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local autograft retrieval from a cervical vertebral body: biomechanical consequences.
    Pitzen T; Tan JS; Dvorak MF; Fisher C; Oxland T
    J Neurosurg Spine; 2012 Apr; 16(4):340-4. PubMed ID: 22225490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty.
    Lim TH; Brebach GT; Renner SM; Kim WJ; Kim JG; Lee RE; Andersson GB; An HS
    Spine (Phila Pa 1976); 2002 Jun; 27(12):1297-302. PubMed ID: 12065977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anterior cervical interbody constructs: effect of a repetitive compressive force on the endplate.
    Ordway NR; Rim BC; Tan R; Hickman R; Fayyazi AH
    J Orthop Res; 2012 Apr; 30(4):587-92. PubMed ID: 22002745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress analysis of interbody fusion--finite element modelling of intervertebral implant and vertebral body.
    Adam C; Pearcy M; McCombe P
    Clin Biomech (Bristol, Avon); 2003 May; 18(4):265-72. PubMed ID: 12689775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does Spanning a Lateral Lumbar Interbody Cage Across the Vertebral Ring Apophysis Increase Loads Required for Failure and Mitigate Endplate Violation.
    Briski DC; Goel VK; Waddell BS; Serhan H; Kodigudla MK; Palepu V; Agarwal AK; Zavatsky JM
    Spine (Phila Pa 1976); 2017 Oct; 42(20):E1158-E1164. PubMed ID: 28472018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anterior cervical plate fixation: a biomechanical study to evaluate the effects of plate design, endplate preparation, and bone mineral density.
    Dvorak MF; Pitzen T; Zhu Q; Gordon JD; Fisher CG; Oxland TR
    Spine (Phila Pa 1976); 2005 Feb; 30(3):294-301. PubMed ID: 15682010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influences of disc degeneration and bone mineral density on the structural properties of lumbar end plates.
    Hou Y; Yuan W
    Spine J; 2012 Mar; 12(3):249-56. PubMed ID: 22366078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.