These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11317757)

  • 1. Effects of geared motor characteristics on tactile perception of tissue stiffness.
    Longnion J; Rosen J; Sinanan M; Hannaford B
    Stud Health Technol Inform; 2001; 81():286-92. PubMed ID: 11317757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computerized endoscopic surgical grasper.
    Hannaford B; Trujillo J; Sinanan M; Moreyra M; Rosen J; Brown J; Leuschke R; MacFarlane M
    Stud Health Technol Inform; 1998; 50():265-71. PubMed ID: 10180551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.
    Ottensmeyer MP; Ben-Ur E; Salisbury JK
    Stud Health Technol Inform; 2000; 70():236-42. PubMed ID: 10977548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-controlled motorized endoscopic grasper for in vivo measurement of soft tissue biomechanical characteristics.
    Brown JD; Rosen J; Moreyra M; Sinanan M; Hannaford B
    Stud Health Technol Inform; 2002; 85():71-3. PubMed ID: 15458062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force controlled and teleoperated endoscopic grasper for minimally invasive surgery--experimental performance evaluation.
    Rosen J; Hannaford B; MacFarlane MP; Sinanan MN
    IEEE Trans Biomed Eng; 1999 Oct; 46(10):1212-21. PubMed ID: 10513126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method in measuring the stiffness of sensed objects with applications for biomedical robotic systems.
    Najarian S; Dargahi J; Zheng XZ
    Int J Med Robot; 2006 Mar; 2(1):84-90. PubMed ID: 17520617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial tactile sensing in minimally invasive surgery - a new technical approach.
    Schostek S; Ho CN; Kalanovic D; Schurr MO
    Minim Invasive Ther Allied Technol; 2006; 15(5):296-304. PubMed ID: 17062404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards an understanding of conventional surgical haptics for use in MIS.
    Zelek JS; Xin H
    Stud Health Technol Inform; 2007; 125():520-2. PubMed ID: 17377341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tactile feedback exceeds visual feedback to display tissue slippage in a laparoscopic grasper.
    Westebring-van der Putten EP; Lysen WW; Henssen VD; Koopmans N; Goossens RH; van den Dobbelsteen JJ; Dankelman J; Jakimowcz J
    Stud Health Technol Inform; 2009; 142():420-5. PubMed ID: 19377198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.
    Kim K; Lee S
    Skin Res Technol; 2015 May; 21(2):164-74. PubMed ID: 25087469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pneumatic haptic feedback actuator array for robotic surgery or simulation.
    King CH; Higa AT; Culjat MO; Han SH; Bisley JW; Carman GP; Dutson E; Grundfest WS
    Stud Health Technol Inform; 2007; 125():217-22. PubMed ID: 17377270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated force-position tactile sensor for improving diagnostic and therapeutic endoscopic surgery.
    Dargahi J; Najarian S
    Biomed Mater Eng; 2004; 14(2):151-66. PubMed ID: 15156106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Blue DRAGON--a system for monitoring the kinematics and the dynamics of endoscopic tools in minimally invasive surgery for objective laparoscopic skill assessment.
    Rosen J; Brown JD; Barreca M; Chang L; Hannaford B; Sinanan M
    Stud Health Technol Inform; 2002; 85():412-8. PubMed ID: 15458124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Haptics in minimally invasive surgery--a review.
    Westebring-van der Putten EP; Goossens RH; Jakimowicz JJ; Dankelman J
    Minim Invasive Ther Allied Technol; 2008; 17(1):3-16. PubMed ID: 18270873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reviewing the technological challenges associated with the development of a laparoscopic palpation device.
    Culmer P; Barrie J; Hewson R; Levesley M; Mon-Williams M; Jayne D; Neville A
    Int J Med Robot; 2012 Jun; 8(2):146-59. PubMed ID: 22351567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liver pathology simulation: algorithm for haptic rendering and force maps for palpation assessment.
    Hamza-Lup FG; Seitan A; Popovici DM; Bogdan CM
    Stud Health Technol Inform; 2013; 184():175-81. PubMed ID: 23400152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new haptic interface for VR medical training.
    Riener R; Burgkart R
    Stud Health Technol Inform; 2002; 85():388-94. PubMed ID: 15458120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical properties of abdominal organs in vivo and postmortem under compression loads.
    Rosen J; Brown JD; De S; Sinanan M; Hannaford B
    J Biomech Eng; 2008 Apr; 130(2):021020. PubMed ID: 18412507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time haptic interface for VR colonoscopy simulation.
    Ilic D; Moix T; Mc Cullough N; Duratti L; Vecerina I; Bleuler H
    Stud Health Technol Inform; 2005; 111():208-12. PubMed ID: 15718729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.