BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11317957)

  • 1. [Contribution of the laboratory to the epidemiologic study of bacterial infections].
    Biron M; Berche P; Ferroni A
    Pathol Biol (Paris); 2001 Mar; 49(2):128-37. PubMed ID: 11317957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative and library epidemiological typing systems: outbreak investigations versus surveillance systems.
    Struelens MJ; De Gheldre Y; Deplano A
    Infect Control Hosp Epidemiol; 1998 Aug; 19(8):565-9. PubMed ID: 9758056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Current and future prospects of molecular biology techniques in the epidemiologic study of nosocomial infections].
    Vila J
    Enferm Infecc Microbiol Clin; 1996; 14(6):341-4. PubMed ID: 8756210
    [No Abstract]   [Full Text] [Related]  

  • 4. Applications of molecular methods to epidemiologic investigations of nosocomial infections in a pediatric hospital.
    Bingen E
    Infect Control Hosp Epidemiol; 1994 Jul; 15(7):488-93. PubMed ID: 7963442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Molecular typing by amplified fragment length polymorphism and PCR-restriction fragment length polymorphism , biotyping and antimicrobial susceptibility of Campylobacter jejuni].
    Sammarco ML; Ripabelli G; Dionisi AM; Fanelli I; Luzzi I
    Ann Ig; 2003; 15(1):11-21. PubMed ID: 12666321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of molecular typing in infection control.
    Patel SJ; Graham PL
    Pediatr Infect Dis J; 2007 Jun; 26(6):527-9. PubMed ID: 17529871
    [No Abstract]   [Full Text] [Related]  

  • 7. Bacterial strain typing in the genomic era.
    Li W; Raoult D; Fournier PE
    FEMS Microbiol Rev; 2009 Sep; 33(5):892-916. PubMed ID: 19453749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Usefulness of molecular epidemiology for outbreak investigations.
    Jarvis WR
    Infect Control Hosp Epidemiol; 1994 Jul; 15(7):500-3. PubMed ID: 7963445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The discriminatory power of ribo-PCR compared to conventional ribotyping for epidemiological purposes.
    Severino P; Darini AL; Magalhães VD
    APMIS; 1999 Dec; 107(12):1079-84. PubMed ID: 10660137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular epidemiology of bacterial infections: examples of methodology and of investigations of outbreaks.
    Wachsmuth K
    Rev Infect Dis; 1986; 8(5):682-92. PubMed ID: 3024288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid identification of pathogenic bacteria by single-enzyme amplified fragment length polymorphism analysis.
    Velappan N; Snodgrass JL; Hakovirta JR; Marrone BL; Burde S
    Diagn Microbiol Infect Dis; 2001 Feb; 39(2):77-83. PubMed ID: 11248519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Applications of PCR techniques for molecular epidemiology of infectious diseases].
    Fernández-Cuenca F
    Enferm Infecc Microbiol Clin; 2004; 22(6):355-60. PubMed ID: 15228903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of plasmid profiles and nucleic acid probes in epidemiologic investigations of foodborne, diarrheal diseases.
    Wachsmuth IK; Kiehlbauch JA; Bopp CA; Cameron DN; Strockbine NA; Wells JG; Blake PA
    Int J Food Microbiol; 1991 Jan; 12(1):77-89. PubMed ID: 2018708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of plasmid profiles in epidemiologic surveillance of disease outbreaks and in tracing the transmission of antibiotic resistance.
    Mayer LW
    Clin Microbiol Rev; 1988 Apr; 1(2):228-43. PubMed ID: 2852997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Typing of food-borne Listeria monocytogenes by polymerase chain reaction-restriction enzyme analysis and amplified fragment length polymorphism.
    Mikasová E; Oravcová K; Kaclíková E; Kuchta T; Drahovská H
    New Microbiol; 2005 Jul; 28(3):265-70. PubMed ID: 16240700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of SCCmec types according to typing pattern determined by multienzyme multiplex PCR-amplified fragment length polymorphism analysis of methicillin-resistant Staphylococcus aureus.
    van der Zee A; Heck M; Sterks M; Harpal A; Spalburg E; Kazobagora L; Wannet W
    J Clin Microbiol; 2005 Dec; 43(12):6042-7. PubMed ID: 16333096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of 23S polymerase chain reaction-restriction fragment length polymorphism and amplified fragment length polymorphism techniques as typing systems for thermophilic campylobacters.
    Moreno Y; Ferrús MA; Vanoostende A; Hernández M; Montes RM; Hernández J
    FEMS Microbiol Lett; 2002 May; 211(1):97-103. PubMed ID: 12052557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular epidemiologic analysis of antibiotic resistant microorganisms.
    John JF
    Adv Exp Med Biol; 1995; 390():155-68. PubMed ID: 8718610
    [No Abstract]   [Full Text] [Related]  

  • 19. [Molecular epidemiology--molecular typing of pathogenic bacteria using pulsed-field gel electrophoresis].
    Ichiyama S
    Nihon Saikingaku Zasshi; 2000 Jan; 55(1):21-7. PubMed ID: 10695345
    [No Abstract]   [Full Text] [Related]  

  • 20. Evaluation of methods for subtyping Campylobacter jejuni during an outbreak involving a food handler.
    Fitzgerald C; Helsel LO; Nicholson MA; Olsen SJ; Swerdlow DL; Flahart R; Sexton J; Fields PI
    J Clin Microbiol; 2001 Jul; 39(7):2386-90. PubMed ID: 11427543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.