These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11318058)

  • 1. Inertial constraints on limb proprioception are independent of visual calibration.
    Riley MA; Turvey MT
    J Exp Psychol Hum Percept Perform; 2001 Apr; 27(2):438-55. PubMed ID: 11318058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The inertia tensor as a basis for the perception of limb orientation.
    Pagano CC; Turvey MT
    J Exp Psychol Hum Percept Perform; 1995 Oct; 21(5):1070-87. PubMed ID: 7595243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the inertial eigenvectors in proprioception near the limits of arm adduction range of motion.
    Riley MA; Shaw TH; Pagano CC
    Hum Mov Sci; 2005 Apr; 24(2):171-83. PubMed ID: 16095738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manual matching of perceived surface orientation is affected by arm posture: evidence of calibration between proprioception and visual experience in near space.
    Li Z; Durgin FH
    Exp Brain Res; 2012 Jan; 216(2):299-309. PubMed ID: 22086494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential exploitation of the inertia tensor in multi-joint arm reaching.
    Bernardin D; Isableu B; Fourcade P; Bardy BG
    Exp Brain Res; 2005 Dec; 167(4):487-95. PubMed ID: 16292573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perception of limb orientation in the vertical plane depends on center of mass rather than inertial eigenvectors.
    van de Langenberg R; Kingma I; Beek PJ
    Exp Brain Res; 2007 Jul; 180(4):595-607. PubMed ID: 17342478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual and Proprioceptive Adaptation of Arm Position in a Virtual Environment.
    Masumoto J; Inui N
    J Mot Behav; 2015; 47(6):483-9. PubMed ID: 25811316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson's disease.
    Adamovich SV; Berkinblit MB; Hening W; Sage J; Poizner H
    Neuroscience; 2001; 104(4):1027-41. PubMed ID: 11457588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape distortion produced by isolated mismatch between vision and proprioception.
    Malfait N; Henriques DY; Gribble PL
    J Neurophysiol; 2008 Jan; 99(1):231-43. PubMed ID: 17977930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prism exposure affects the proprioceptive frames of reference for interlimb rhythmic coordination.
    Riley MA; Black DP
    Motor Control; 2003 Jan; 7(1):57-70. PubMed ID: 12536162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensorimotor effects on central space representation: prism adaptation influences haptic and visual representations in normal subjects.
    Girardi M; McIntosh RD; Michel C; Vallar G; Rossetti Y
    Neuropsychologia; 2004; 42(11):1477-87. PubMed ID: 15246285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proprioceptive influences on auditory and visual spatial localization.
    Lackner JR; Shenker B
    J Neurosci; 1985 Mar; 5(3):579-83. PubMed ID: 3973685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-lasting aftereffect of a single prism adaptation: shifts in vision and proprioception are independent.
    Hatada Y; Rossetti Y; Miall RC
    Exp Brain Res; 2006 Aug; 173(3):415-24. PubMed ID: 16552560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patients with lesions to the intraparietal cortex show greater proprioceptive realignment after prism adaptation: Evidence from open-loop pointing and manual straight ahead.
    Bultitude JH; Hollifield M; Rafal RD
    Neuropsychologia; 2021 Jul; 158():107913. PubMed ID: 34139246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociable effects of the implicit and explicit memory systems on learning control of reaching.
    Hwang EJ; Smith MA; Shadmehr R
    Exp Brain Res; 2006 Aug; 173(3):425-37. PubMed ID: 16506003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A coordinate system for visual motion perception.
    Darling WG; Pizzimenti MA
    Exp Brain Res; 2001 Nov; 141(2):174-83. PubMed ID: 11713629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy.
    Miall RC; Kitchen NM; Nam SH; Lefumat H; Renault AG; Ørstavik K; Cole JD; Sarlegna FR
    Exp Brain Res; 2018 Aug; 236(8):2137-2155. PubMed ID: 29779050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy exchanges at contact events guide sensorimotor integration.
    Farshchian A; Sciutti A; Pressman A; Nisky I; Mussa-Ivaldi FA
    Elife; 2018 May; 7():. PubMed ID: 29809144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of arm stiffness and muscle effort on position reproduction error in the horizontal plane.
    Itaguchi Y; Fukuzawa K
    Percept Mot Skills; 2012 Jun; 114(3):757-73. PubMed ID: 22913018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The visual encoding of purely proprioceptive intermanual tasks is due to the need of transforming joint signals, not to their interhemispheric transfer.
    Arnoux L; Fromentin S; Farotto D; Beraneck M; McIntyre J; Tagliabue M
    J Neurophysiol; 2017 Sep; 118(3):1598-1608. PubMed ID: 28615330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.