BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 11318404)

  • 1. Experimental design methodology applied to the study of channel dimensions on the elution of red blood cells in gravitational field flow fractionation.
    Rasouli S; Assidjo E; Chianéa T; Cardot PJ
    J Chromatogr B Biomed Sci Appl; 2001 Apr; 754(1):11-21. PubMed ID: 11318404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmolarity effects on red blood cell elution in sedimentation field-flow fractionation.
    Assidjo NE; Chianéa T; Clarot I; Dreyfuss MF; Cardot PJ
    J Chromatogr Sci; 1999 Jul; 37(7):229-36. PubMed ID: 10422264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field- and flow-dependent trapping of red blood cells on polycarbonate accumulation wall in sedimentation field-flow fractionation.
    Chianéa T; Cardot PJ; Assidjo E; Monteil J; Clarot I; Krausz P
    J Chromatogr B Biomed Sci Appl; 1999 Oct; 734(1):91-9. PubMed ID: 10574194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different elution modes and field programming in gravitational field-flow fractionation. Effect of channel angle.
    Park MR; Kang DY; Chmelik J; Kang N; Kim JS; Lee S
    J Chromatogr A; 2008 Oct; 1209(1-2):206-11. PubMed ID: 18805537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of red blood cell fractionation by gravitational field-flow fractionation.
    Urbánková E; Vacek A; Nováková N; Matulík F; Chmelík J
    J Chromatogr; 1992 Nov; 583(1):27-34. PubMed ID: 1484089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of living red blood cells by gravitational field-flow fractionation.
    Cardot PJ; Gerota J; Martin M
    J Chromatogr; 1991 Jul; 568(1):93-103. PubMed ID: 1770113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization for size separation of graphene oxide sheets by flow/hyperlayer field-flow fractionation.
    Ko M; Choi HJ; Kim JY; Kim IH; Kim SO; Moon MH
    J Chromatogr A; 2022 Oct; 1681():463475. PubMed ID: 36088778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and characterization of red blood cells with different membrane deformability using steric field-flow fractionation.
    Tong X; Caldwell KD
    J Chromatogr B Biomed Appl; 1995 Dec; 674(1):39-47. PubMed ID: 8749250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sedimentation field-flow-fractionation: emergence of a new cell separation methodology.
    Chianéa T; Assidjo NE; Cardot PJ
    Talanta; 2000 Apr; 51(5):835-47. PubMed ID: 18967916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility study of red blood cell debulking by magnetic field-flow fractionation with step-programmed flow.
    Moore LR; Williams PS; Nehl F; Abe K; Chalmers JJ; Zborowski M
    Anal Bioanal Chem; 2014 Feb; 406(6):1661-70. PubMed ID: 24141316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different elution modes and field programming in gravitational field-flow fractionation. IV. Field programming achieved with channels of non-constant cross-sections.
    Plocková J; Matulík F; Chmelík J
    J Chromatogr A; 2002 Apr; 955(1):95-103. PubMed ID: 12061568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation and size distribution of red blood cells of diverse size, shape, and origin by flow/hyperlayer field-flow fractionation.
    Barman BN; Ashwood ER; Giddings JC
    Anal Biochem; 1993 Jul; 212(1):35-42. PubMed ID: 8368513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved sedimentation field-flow fractionation separation channel for concentrated cellular elution.
    Mélin C; Lacroix A; Lalloué F; Pothier A; Zhang LY; Perraud A; Dalmay C; Lautrette C; Jauberteau MO; Cardot P; Mathonnet M; Battu S
    J Chromatogr A; 2013 Aug; 1302():118-24. PubMed ID: 23791448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-speed particle separation and steric inversion in thin flow field-flow fractionation channels.
    Jensen KD; Williams SK; Giddings JC
    J Chromatogr A; 1996 Oct; 746(1):137-45. PubMed ID: 8885386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of carrier fluid viscosity on retention time and resolution in gravitational field-flow fractionation.
    Lee S; Kang DY; Park M; Williams PS
    Anal Chem; 2011 May; 83(9):3343-51. PubMed ID: 21466170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges.
    Meisterjahn B; Wagner S; von der Kammer F; Hennecke D; Hofmann T
    J Chromatogr A; 2016 Apr; 1440():150-159. PubMed ID: 26948764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast "hyperlayer" separation development in sedimentation field flow fractionation.
    Kassab JR; Cardot PJ; Zahoransky RA; Battu S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Nov; 826(1-2):8-16. PubMed ID: 16011912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperlayer separation in hollow fiber flow field-flow fractionation: effect of membrane materials on resolution and selectivity.
    Min BR; Kim SJ; Ahn KH; Moon MH
    J Chromatogr A; 2002 Mar; 950(1-2):175-82. PubMed ID: 11990991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-capacity channel designed for particle separation with controlled electric fields and evaluation of involved forces.
    Masudo T; Okada T
    J Chromatogr A; 2006 Feb; 1106(1-2):196-204. PubMed ID: 16443462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyphenation of sedimentation field flow fractionation with flow cytometry.
    Cardot P; Battu S; Simon A; Delage C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2002 Mar; 768(2):285-95. PubMed ID: 11888057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.