These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 11318635)

  • 1. Core formation in apomyoglobin: probing the upper reaches of the folding energy landscape.
    Gulotta M; Gilmanshin R; Buscher TC; Callender RH; Dyer RB
    Biochemistry; 2001 May; 40(17):5137-43. PubMed ID: 11318635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary folding dynamics of sperm whale apomyoglobin: core formation.
    Gulotta M; Rogatsky E; Callender RH; Dyer RB
    Biophys J; 2003 Mar; 84(3):1909-18. PubMed ID: 12609893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of apomyoglobin's various acid-destabilized forms.
    Gilmanshin R; Gulotta M; Dyer RB; Callender RH
    Biochemistry; 2001 May; 40(17):5127-36. PubMed ID: 11318634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the folding and unfolding dynamics of secondary and tertiary structures in a three-helix bundle protein.
    Vu DM; Myers JK; Oas TG; Dyer RB
    Biochemistry; 2004 Mar; 43(12):3582-9. PubMed ID: 15035628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved UV resonance Raman investigation of protein folding using a rapid mixer: characterization of kinetic folding intermediates of apomyoglobin.
    Haruta N; Kitagawa T
    Biochemistry; 2002 May; 41(21):6595-604. PubMed ID: 12022863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative sub-millisecond folding kinetics of apomyoglobin pH 4 intermediate.
    Weisbuch S; Gérard F; Pasdeloup M; Cappadoro J; Dupont Y; Jamin M
    Biochemistry; 2005 May; 44(18):7013-23. PubMed ID: 15865446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast events in protein folding: relaxation dynamics and structure of the I form of apomyoglobin.
    Gilmanshin R; Williams S; Callender RH; Woodruff WH; Dyer RB
    Biochemistry; 1997 Dec; 36(48):15006-12. PubMed ID: 9398226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusive motions control the folding and unfolding kinetics of the apomyoglobin pH 4 molten globule intermediate.
    Ramos CH; Weisbuch S; Jamin M
    Biochemistry; 2007 Apr; 46(14):4379-89. PubMed ID: 17367166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early events in apomyoglobin unfolding probed by laser T-jump/UV resonance Raman spectroscopy.
    Huang CY; Balakrishnan G; Spiro TG
    Biochemistry; 2005 Dec; 44(48):15734-42. PubMed ID: 16313176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the non-native H helix translocation in apomyoglobin folding intermediates.
    Aoto PC; Nishimura C; Dyson HJ; Wright PE
    Biochemistry; 2014 Jun; 53(23):3767-80. PubMed ID: 24857522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin.
    Gilmanshin R; Williams S; Callender RH; Woodruff WH; Dyer RB
    Proc Natl Acad Sci U S A; 1997 Apr; 94(8):3709-13. PubMed ID: 9108042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational and dynamic characterization of the molten globule state of an apomyoglobin mutant with an altered folding pathway.
    Cavagnero S; Nishimura C; Schwarzinger S; Dyson HJ; Wright PE
    Biochemistry; 2001 Dec; 40(48):14459-67. PubMed ID: 11724558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The core of apomyoglobin E-form folds at the diffusion limit.
    Gilmanshin R; Callender RH; Dyer RB
    Nat Struct Biol; 1998 May; 5(5):363-5. PubMed ID: 9586997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of native and non-native structure in kinetic folding intermediates of apomyoglobin.
    Nishimura C; Dyson HJ; Wright PE
    J Mol Biol; 2006 Jan; 355(1):139-56. PubMed ID: 16300787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Native and non-native secondary structure and dynamics in the pH 4 intermediate of apomyoglobin.
    Eliezer D; Chung J; Dyson HJ; Wright PE
    Biochemistry; 2000 Mar; 39(11):2894-901. PubMed ID: 10715109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvation and desolvation dynamics in apomyoglobin folding monitored by time-resolved infrared spectroscopy.
    Nishiguchi S; Goto Y; Takahashi S
    J Mol Biol; 2007 Oct; 373(2):491-502. PubMed ID: 17850819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding of apomyoglobin: Analysis of transient intermediate structure during refolding using quick hydrogen deuterium exchange and NMR.
    Nishimura C
    Proc Jpn Acad Ser B Phys Biol Sci; 2017; 93(1):10-27. PubMed ID: 28077807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding.
    Yao J; Chung J; Eliezer D; Wright PE; Dyson HJ
    Biochemistry; 2001 Mar; 40(12):3561-71. PubMed ID: 11297422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation of the acidic compact state of apomyoglobin from yellowfin tuna.
    Bismuto E; Di Maggio E; Pleus S; Sikor M; Röcker C; Nienhaus GU; Lamb DC
    Proteins; 2009 Feb; 74(2):273-90. PubMed ID: 18618699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of H helix destabilizing mutations on the kinetic and equilibrium folding of apomyoglobin.
    Cavagnero S; Dyson HJ; Wright PE
    J Mol Biol; 1999 Jan; 285(1):269-82. PubMed ID: 9878405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.