These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 11318952)

  • 1. Regulation of ROMK and channel-inducing factor (CHIF) in acute renal failure due to ischemic reperfusion injury.
    Gimelreich D; Popovtzer MM; Wald H; Pizov G; Berlatzky Y; Rubinger D
    Kidney Int; 2001 May; 59(5):1812-20. PubMed ID: 11318952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible molecular basis for changes in potassium handling in acute renal failure.
    Rabb H; Wang Z; Postler G; Soleimani M
    Am J Kidney Dis; 2000 May; 35(5):871-7. PubMed ID: 10793021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of down-regulated CHIF mRNA in the pathophysiology of hyperkalemia of acute tubular necrosis.
    Shustin L; Wald H; Popovtzer MM
    Am J Kidney Dis; 1998 Oct; 32(4):600-4. PubMed ID: 9774121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelin up-regulation and localization following renal ischemia and reperfusion.
    Wilhelm SM; Simonson MS; Robinson AV; Stowe NT; Schulak JA
    Kidney Int; 1999 Mar; 55(3):1011-8. PubMed ID: 10027938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ischemic-reperfusion injury in the kidney: overexpression of colonic H+-K+-ATPase and suppression of NHE-3.
    Wang Z; Rabb H; Craig T; Burnham C; Shull GE; Soleimani M
    Kidney Int; 1997 Apr; 51(4):1106-15. PubMed ID: 9083276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential regulation of ROMK expression in kidney cortex and medulla by aldosterone and potassium.
    Wald H; Garty H; Palmer LG; Popovtzer MM
    Am J Physiol; 1998 Aug; 275(2):F239-45. PubMed ID: 9691014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential regulation of CHIF mRNA by potassium intake and aldosterone.
    Wald H; Popovtzer MM; Garty H
    Am J Physiol; 1997 May; 272(5 Pt 2):F617-23. PubMed ID: 9176372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the ROMK potassium channel in the kidney.
    Wald H
    Exp Nephrol; 1999; 7(3):201-6. PubMed ID: 10352359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular localization and regulation of CHIF in kidney and colon.
    Capurro C; Coutry N; Bonvalet JP; Escoubet B; Garty H; Farman N
    Am J Physiol; 1996 Sep; 271(3 Pt 1):C753-62. PubMed ID: 8843704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium restriction downregulates ROMK expression in rat kidney.
    Mennitt PA; Frindt G; Silver RB; Palmer LG
    Am J Physiol Renal Physiol; 2000 Jun; 278(6):F916-24. PubMed ID: 10836979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aldosterone induction and epithelial distribution of CHIF.
    Wald H; Goldstein O; Asher C; Yagil Y; Garty H
    Am J Physiol; 1996 Aug; 271(2 Pt 2):F322-9. PubMed ID: 8770163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex differences in the alterations of Na(+), K(+)-ATPase following ischaemia-reperfusion injury in the rat kidney.
    Fekete A; Vannay A; Vér A; Vásárhelyi B; Müller V; Ouyang N; Reusz G; Tulassay T; Szabó AJ
    J Physiol; 2004 Mar; 555(Pt 2):471-80. PubMed ID: 14673189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo transfection of NF-kappaB decoy oligodeoxynucleotides attenuate renal ischemia/reperfusion injury in rats.
    Cao CC; Ding XQ; Ou ZL; Liu CF; Li P; Wang L; Zhu CF
    Kidney Int; 2004 Mar; 65(3):834-45. PubMed ID: 14871403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the renal sodium-dependent phosphate cotransporter NaPi2 (Npt2) in acute renal failure due to ischemia and reperfusion.
    Rubinger D; Wald H; Gimelreich D; Halaihel N; Rogers T; Levi M; Popovtzer MM
    Nephron Physiol; 2005; 100(1):p1-12. PubMed ID: 15775707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of ATP-sensitive potassium channel mRNA expression in rat kidney following ischemic injury.
    Sgard F; Faure C; Drieu la Rochelle C; Graham D; O'Connor SE; Janiak P; Besnard F
    Biochem Biophys Res Commun; 2000 Mar; 269(2):618-22. PubMed ID: 10708603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperbaric oxygen therapy induces kidney protection in an ischemia/reperfusion model in rats.
    Ramalho RJ; de Oliveira PS; Cavaglieri RC; Silva C; Medeiros PR; Filho DM; Poli-de-Figueiredo LF; Noronha IL
    Transplant Proc; 2012 Oct; 44(8):2333-6. PubMed ID: 23026586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ATP-sensitive potassium channel blocker glibenclamide prevents renal ischemia/reperfusion injury in rats.
    Pompermayer K; Souza DG; Lara GG; Silveira KD; Cassali GD; Andrade AA; Bonjardim CA; Passaglio KT; Assreuy J; Cunha FQ; Vieira MA; Teixeira MM
    Kidney Int; 2005 May; 67(5):1785-96. PubMed ID: 15840025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ischemic post-conditioning attenuates renal ischemic reperfusion injury via down-regulation of toll-like receptor 4 in diabetic rats.
    Jiang BT; Chen QZ; Guo ZH; Zou W; Chen X; Zha WL
    Ren Fail; 2016 Oct; 38(9):1425-1431. PubMed ID: 27494109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-Arginine transport is augmented through up-regulation of tubular CAT-2 mRNA in ischemic acute renal failure in rats.
    Schwartz IF; Schwartz D; Traskonov M; Chernichovsky T; Wollman Y; Gnessin E; Topilsky I; Levo Y; Iaina A
    Kidney Int; 2002 Nov; 62(5):1700-6. PubMed ID: 12371970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of transient receptor potential melastatin 7 up-regulated in the early stage of renal ischemia-reperfusion.
    Meng Z; Wang X; Yang Z; Xiang F
    Transplant Proc; 2012 Jun; 44(5):1206-10. PubMed ID: 22663985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.