These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11319025)

  • 1. Early detection of graft incompatibility in apricot (Prunus armeniaca) using in vitro techniques.
    Errea P; Garay L; Marín JA
    Physiol Plant; 2001 May; 112(1):135-141. PubMed ID: 11319025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Phenolic Compounds for the Determination of Grafts (in) Compatibility Using
    Skočajić D; Gašić U; Dabić Zagorac D; Nešić M; Tešić Ž; Meland M; Fotirić Akšić M
    Plants (Basel); 2021 Dec; 10(12):. PubMed ID: 34961293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential induction of phenylalanine ammonia-lyase gene expression in response to in vitro callus unions of Prunus spp.
    Pina A; Errea P
    J Plant Physiol; 2008 May; 165(7):705-14. PubMed ID: 17910896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping Quantitative Trait Loci Associated With Graft (In)Compatibility in Apricot (
    Pina A; Irisarri P; Errea P; Zhebentyayeva T
    Front Plant Sci; 2021; 12():622906. PubMed ID: 33679836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-to-cell transport through plasmodesmata in tree callus cultures.
    Pina A; Errea P; Schulz A; Martens HJ
    Tree Physiol; 2009 Jun; 29(6):809-18. PubMed ID: 19398772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inheritance of self- and graft-incompatibility traits in an F1 apricot progeny.
    Irisarri P; Zhebentyayeva T; Errea P; Pina A
    PLoS One; 2019; 14(5):e0216371. PubMed ID: 31071130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms Underlying Graft Union Formation and Rootstock Scion Interaction in Horticultural Plants.
    Rasool A; Mansoor S; Bhat KM; Hassan GI; Baba TR; Alyemeni MN; Alsahli AA; El-Serehy HA; Paray BA; Ahmad P
    Front Plant Sci; 2020; 11():590847. PubMed ID: 33362818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenolic compounds involved in grafting incompatibility of Vitis spp: development and validation of an analytical method for their quantification.
    Canas S; Assunção M; Brazão J; Zanol G; Eiras-Dias JE
    Phytochem Anal; 2015; 26(1):1-7. PubMed ID: 24888592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon and nitrogen partitioning in peach/plum grafts.
    Moing A; Gaudillère JP
    Tree Physiol; 1992 Jan; 10(1):81-92. PubMed ID: 14969877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical Characterization and Differential Expression of
    Amri R; Font I Forcada C; Giménez R; Pina A; Moreno MÁ
    Front Plant Sci; 2021; 12():622578. PubMed ID: 33679835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Self-Incompatibility Alleles by Specific PCR Analysis and
    Herrera S; Rodrigo J; Hormaza JI; Lora J
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30445779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and the composition and transport of carbohydrate in compatible and incompatible peach/plum grafts.
    Moing A; Salesses G; Saglio PH
    Tree Physiol; 1987 Dec; 3(4):345-54. PubMed ID: 14975918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compatibility Evaluation and Anatomical Observation of Melon Grafted Onto Eight
    Xiong M; Liu C; Guo L; Wang J; Wu X; Li L; Bie Z; Huang Y
    Front Plant Sci; 2021; 12():762889. PubMed ID: 34745194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth, cambial activity and phloem structure in compatible and incompatible peach/plum grafts.
    Moing A; Carde JP
    Tree Physiol; 1988 Dec; 4(4):347-59. PubMed ID: 14972805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graft union formation in artichoke grafting onto wild and cultivated cardoon: an anatomical study.
    Trinchera A; Pandozy G; Rinaldi S; Crinò P; Temperini O; Rea E
    J Plant Physiol; 2013 Dec; 170(18):1569-78. PubMed ID: 23932643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolite profiling and transcriptome analyses provide insight into the regulatory network of graft incompatibility in litchi.
    Hou Y; Qin X; Qiu H; Li D; Xu N; Zhang S; Fang C; Li H
    Front Genet; 2022; 13():1059333. PubMed ID: 36685870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying early metabolite markers of successful graft union formation in grapevine.
    Loupit G; Fonayet JV; Prigent S; Prodhomme D; Spilmont AS; Hilbert G; Franc C; De Revel G; Richard T; Ollat N; Cookson SJ
    Hortic Res; 2022 Jan; 9():. PubMed ID: 35043179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying Molecular Markers of Successful Graft Union Formation and Compatibility.
    Loupit G; Cookson SJ
    Front Plant Sci; 2020; 11():610352. PubMed ID: 33343610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-(in)compatibility in apricot germplasm is controlled by two major loci, S and M.
    Muñoz-Sanz JV; Zuriaga E; López I; Badenes ML; Romero C
    BMC Plant Biol; 2017 Apr; 17(1):82. PubMed ID: 28441955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized graft incompatibility in pear/quince (Pyrus communis/Cydonia oblonga) combinations: multivariate analysis of histological data from 5-month-old grafts.
    Ermel FF; Kervella J; Catesson AM; Poëssel JL
    Tree Physiol; 1999 Aug; 19(10):645-654. PubMed ID: 12651320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.