These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11319035)

  • 1. Maize endosperm secretes a novel antifungal protein into adjacent maternal tissue.
    Serna A; Maitz M; O'Connell T; Santandrea G; Thevissen K; Tienens K; Hueros G; Faleri C; Cai G; Lottspeich F; Thompson RD
    Plant J; 2001 Mar; 25(6):687-98. PubMed ID: 11319035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for factors regulating transfer cell-specific expression in maize endosperm.
    Hueros G; Royo J; Maitz M; Salamini F; Thompson RD
    Plant Mol Biol; 1999 Oct; 41(3):403-14. PubMed ID: 10598106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-phloem protein trafficking in the maize caryopsis: zmTRXh1, a thioredoxin specifically expressed in the pedicel parenchyma of Zea mays L., is found predominantly in the placentochalaza.
    Santandrea G; Guo Y; O'Connell T; Thompson RD
    Plant Mol Biol; 2002 Nov; 50(4-5):743-56. PubMed ID: 12374305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A protective role for the embryo surrounding region of the maize endosperm, as evidenced by the characterisation of ZmESR-6, a defensin gene specifically expressed in this region.
    Balandín M; Royo J; Gómez E; Muniz LM; Molina A; Hueros G
    Plant Mol Biol; 2005 May; 58(2):269-82. PubMed ID: 16027978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ZmEBE genes show a novel, continuous expression pattern in the central cell before fertilization and in specific domains of the resulting endosperm after fertilization.
    Magnard JL; Lehouque G; Massonneau A; Frangne N; Heckel T; Gutierrez-Marcos JF; Perez P; Dumas C; Rogowsky PM
    Plant Mol Biol; 2003 Dec; 53(6):821-36. PubMed ID: 15082928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and expression analyses of sucrose non-fermenting-1-related kinase 1 (SnRK1b) gene during development of sorghum and maize endosperm and its implicated role in sugar-to-starch metabolic transition.
    Jain M; Li QB; Chourey PS
    Physiol Plant; 2008 Sep; 134(1):161-73. PubMed ID: 18433416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The maize transfer cell-specific type-A response regulator ZmTCRR-1 appears to be involved in intercellular signalling.
    Muñiz LM; Royo J; Gómez E; Barrero C; Bergareche D; Hueros G
    Plant J; 2006 Oct; 48(1):17-27. PubMed ID: 16925601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of cereal endosperm expression domains: identification and properties of a maize transfer cell-specific transcription factor, ZmMRP-1.
    Gómez E; Royo J; Guo Y; Thompson R; Hueros G
    Plant Cell; 2002 Mar; 14(3):599-610. PubMed ID: 11910007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZEMa, a member of a novel group of MADS box genes, is alternatively spliced in maize endosperm.
    Montag K; Salamini F; Thompson RD
    Nucleic Acids Res; 1995 Jun; 23(12):2168-77. PubMed ID: 7610044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The eEFIA gene family is differentially expressed in maize endosperm.
    Carneiro NP; Hughes PA; Larkins BA
    Plant Mol Biol; 1999 Dec; 41(6):801-13. PubMed ID: 10737145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and expression of an antifungal zeamatin-like protein (Zlp) gene from Zea mays.
    Malehorn DE; Borgmeyer JR; Smith CE; Shah DM
    Plant Physiol; 1994 Dec; 106(4):1471-81. PubMed ID: 7846159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport.
    Sosso D; Luo D; Li QB; Sasse J; Yang J; Gendrot G; Suzuki M; Koch KE; McCarty DR; Chourey PS; Rogowsky PM; Ross-Ibarra J; Yang B; Frommer WB
    Nat Genet; 2015 Dec; 47(12):1489-93. PubMed ID: 26523777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A putative plant organelle RNA recognition protein gene is essential for maize kernel development.
    Chettoor AM; Yi G; Gomez E; Hueros G; Meeley RB; Becraft PW
    J Integr Plant Biol; 2015 Mar; 57(3):236-46. PubMed ID: 24985738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa).
    Li XJ; Zhang YF; Hou M; Sun F; Shen Y; Xiu ZH; Wang X; Chen ZL; Sun SS; Small I; Tan BC
    Plant J; 2014 Sep; 79(5):797-809. PubMed ID: 24923534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A transcript encoding a nucleic acid-binding protein specifically expressed in maize seeds.
    Heyl A; Muth J; Santandrea G; O'Connell T; Serna A; Thompson RD
    Mol Genet Genomics; 2001 Oct; 266(2):180-9. PubMed ID: 11683258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maize cDNAs expressed in endosperm encode functional farnesyl diphosphate synthase with geranylgeranyl diphosphate synthase activity.
    Cervantes-Cervantes M; Gallagher CE; Zhu C; Wurtzel ET
    Plant Physiol; 2006 May; 141(1):220-31. PubMed ID: 16581875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Duplicated fie genes in maize: expression pattern and imprinting suggest distinct functions.
    Danilevskaya ON; Hermon P; Hantke S; Muszynski MG; Kollipara K; Ananiev EV
    Plant Cell; 2003 Feb; 15(2):425-38. PubMed ID: 12566582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of BET1, a gene expressed in the endosperm transfer cells of maize.
    Hueros G; Varotto S; Salamini F; Thompson RD
    Plant Cell; 1995 Jun; 7(6):747-57. PubMed ID: 7647565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncleaved legumin in developing maize endosperm: identification, accumulation and putative subcellular localization.
    Yamagata T; Kato H; Kuroda S; Abe S; Davies E
    J Exp Bot; 2003 Mar; 54(384):913-22. PubMed ID: 12598562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surrogate biochemistry: use of Escherichia coli to identify plant cDNAs that impact metabolic engineering of carotenoid accumulation.
    Gallagher CE; Cervantes-Cervantes M; Wurtzel ET
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):713-9. PubMed ID: 12664151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.