BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 11319121)

  • 1. Biotransformations of paralytic shellfish toxins by bacteria isolated from bivalve molluscs.
    Smith EA; Grant F; Ferguson CM; Gallacher S
    Appl Environ Microbiol; 2001 May; 67(5):2345-53. PubMed ID: 11319121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial degradation of paralytic shellfish toxins.
    Donovan CJ; Ku JC; Quilliam MA; Gill TA
    Toxicon; 2008 Jul; 52(1):91-100. PubMed ID: 18573270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential accumulation of paralytic shellfish toxins from Alexandrium minutum in the pearl oyster, Pinctada imbricata.
    Murray SA; O'Connor WA; Alvin A; Mihali TK; Kalaitzis J; Neilan BA
    Toxicon; 2009 Sep; 54(3):217-23. PubMed ID: 19375444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paralytic shellfish poisoning in southern China.
    Anderson DM; Kulis DM; Qi YZ; Zheng L; Lu S; Lin YT
    Toxicon; 1996 May; 34(5):579-90. PubMed ID: 8783452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission of the paralytic shellfish poisoning toxins, from dinoflagellate to gastropod.
    Chen CY; Chou HN
    Toxicon; 1998 Mar; 36(3):515-22. PubMed ID: 9637371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteria and paralytic shellfish toxins.
    Gallacher S; Smith EA
    Protist; 1999 Oct; 150(3):245-55. PubMed ID: 10575698
    [No Abstract]   [Full Text] [Related]  

  • 7. Liquid chromatographic post-column oxidation method for analysis of paralytic shellfish toxins in mussels, clams, scallops, and oysters: single-laboratory validation.
    Van de Riet JM; Gibbs RS; Chou FW; Muggah PM; Rourke WA; Burns G; Thomas K; Quilliam MA
    J AOAC Int; 2009; 92(6):1690-704. PubMed ID: 20166587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of in vitro glucuronidation and enzymatic transformation of paralytic shellfish toxins by healthy human liver microsomes fraction.
    García C; Rodriguez-Navarro A; Díaz JC; Torres R; Lagos N
    Toxicon; 2009 Feb; 53(2):206-13. PubMed ID: 19041885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial utilization of the neurotoxin domoic acid: blue mussels (Mytilus edulis) and soft shell clams (Mya arenaria) as sources of the microorganisms.
    Stewart JE; Marks LJ; Gilgan MW; Pfeiffer E; Zwicker BM
    Can J Microbiol; 1998 May; 44(5):456-64. PubMed ID: 9741971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of paralytic shellfish toxins and their metabolites during timecourse exposure of scallops Chlamys farreri and mussels Mytilus galloprovincialis to Alexandrium pacificum.
    Qiu J; Meng F; Ding L; Che Y; McCarron P; Beach DG; Li A
    Aquat Toxicol; 2018 Jul; 200():233-240. PubMed ID: 29778932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A feasibility study into the provision of Paralytic Shellfish Toxins laboratory reference materials by mass culture of Alexandrium and shellfish feeding experiments.
    Higman WA; Turner A
    Toxicon; 2010 Sep; 56(4):497-501. PubMed ID: 20493202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Route of metabolization and detoxication of paralytic shellfish toxins in humans.
    García C; Barriga A; Díaz JC; Lagos M; Lagos N
    Toxicon; 2010 Jan; 55(1):135-44. PubMed ID: 19632259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paralytic Shellfish Toxins (PST)-Transforming Enzymes: A Review.
    Raposo MIC; Gomes MTSR; Botelho MJ; Rudnitskaya A
    Toxins (Basel); 2020 May; 12(5):. PubMed ID: 32456077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proposed Biotransformation Pathways for New Metabolites of Paralytic Shellfish Toxins Based on Field and Experimental Mussel Samples.
    Ding L; Qiu J; Li A
    J Agric Food Chem; 2017 Jul; 65(27):5494-5502. PubMed ID: 28616979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of ten toxins associated with paralytic shellfish poison using prechromatographic oxidation and liquid chromatography with fluorescence detection.
    Lawrence JF; Ménard C; Charbonneau CF; Hall S
    J Assoc Off Anal Chem; 1991; 74(2):404-9. PubMed ID: 1646784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paralytic shellfish poisoning: post-mortem analysis of tissue and body fluid samples from human victims in the Patagonia fjords.
    García C; del Carmen Bravo M; Lagos M; Lagos N
    Toxicon; 2004 Feb; 43(2):149-58. PubMed ID: 15019474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of paralytic shellfish toxins in dinoflagellate Alexandrium tamarense by using isotachophoresis/capillary electrophoresis.
    Wu Y; Ho AY; Qian PY; Leung KS; Cai Z; Lin JM
    J Sep Sci; 2006 Feb; 29(3):399-404. PubMed ID: 16544882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum.
    Green DH; Llewellyn LE; Negri AP; Blackburn SI; Bolch CJ
    FEMS Microbiol Ecol; 2004 Mar; 47(3):345-57. PubMed ID: 19712323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The first evidence of paralytic shellfish toxins in the fresh water cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil.
    Lagos N; Onodera H; Zagatto PA; Andrinolo D; Azevedo SM; Oshima Y
    Toxicon; 1999 Oct; 37(10):1359-73. PubMed ID: 10414862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorometric detection of paralytic shellfish poisoning toxins.
    Indrasena WM; Gill TA
    Anal Biochem; 1998 Nov; 264(2):230-6. PubMed ID: 9866688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.