BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 11319259)

  • 41. Solution structure of ThiS and implications for the evolutionary roots of ubiquitin.
    Wang C; Xi J; Begley TP; Nicholson LK
    Nat Struct Biol; 2001 Jan; 8(1):47-51. PubMed ID: 11135670
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heterotachy and functional shift in protein evolution.
    Philippe H; Casane D; Gribaldo S; Lopez P; Meunier J
    IUBMB Life; 2003; 55(4-5):257-65. PubMed ID: 12880207
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Homology modeling of an RNP domain from a human RNA-binding protein: Homology-constrained energy optimization provides a criterion for distinguishing potential sequence alignments.
    Sahasrabudhe PV; Tejero R; Kitao S; Furuichi Y; Montelione GT
    Proteins; 1998 Dec; 33(4):558-66. PubMed ID: 9849939
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A nonadaptive origin of a beneficial trait: in silico selection for free energy of folding leads to the neutral emergence of mutational robustness in single domain proteins.
    Pagan RF; Massey SE
    J Mol Evol; 2014 Feb; 78(2):130-9. PubMed ID: 24362542
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effective connectivity profile: a structural representation that evidences the relationship between protein structures and sequences.
    Bastolla U; Ortíz AR; Porto M; Teichert F
    Proteins; 2008 Dec; 73(4):872-88. PubMed ID: 18536008
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Can molecular dynamics simulations help in discriminating correct from erroneous protein 3D models?
    Taly JF; Marin A; Gibrat JF
    BMC Bioinformatics; 2008 Jan; 9():6. PubMed ID: 18179702
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural comparison of the PhoB and OmpR DNA-binding/transactivation domains and the arrangement of PhoB molecules on the phosphate box.
    Okamura H; Hanaoka S; Nagadoi A; Makino K; Nishimura Y
    J Mol Biol; 2000 Feb; 295(5):1225-36. PubMed ID: 10653699
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Folding the main chain of small proteins with the genetic algorithm.
    Dandekar T; Argos P
    J Mol Biol; 1994 Feb; 236(3):844-61. PubMed ID: 8114098
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Correlation between evolutionary structural development and protein folding.
    Nagao C; Terada TP; Yomo T; Sasai M
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):18950-5. PubMed ID: 16365314
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural classification of thioredoxin-like fold proteins.
    Qi Y; Grishin NV
    Proteins; 2005 Feb; 58(2):376-88. PubMed ID: 15558583
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A first-principles model of early evolution: emergence of gene families, species, and preferred protein folds.
    Zeldovich KB; Chen P; Shakhnovich BE; Shakhnovich EI
    PLoS Comput Biol; 2007 Jul; 3(7):e139. PubMed ID: 17630830
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of indels on the flanking regions in structural domains.
    Zhang Z; Huang J; Wang Z; Wang L; Gao P
    Mol Biol Evol; 2011 Jan; 28(1):291-301. PubMed ID: 20671041
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Understanding the highly efficient catalysis of prokaryotic peptide deformylases by shedding light on the determinants specifying the low activity of the human counterpart.
    Fieulaine S; Desmadril M; Meinnel T; Giglione C
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):242-52. PubMed ID: 24531459
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural basis for the topological specificity function of MinE.
    King GF; Shih YL; Maciejewski MW; Bains NP; Pan B; Rowland SL; Mullen GP; Rothfield LI
    Nat Struct Biol; 2000 Nov; 7(11):1013-7. PubMed ID: 11062554
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of the sequence and structural features of the left-handed beta-helical fold.
    Choi JH; Govaerts C; May BC; Cohen FE
    Proteins; 2008 Oct; 73(1):150-60. PubMed ID: 18398908
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Connectivity of neutral networks, overdispersion, and structural conservation in protein evolution.
    Bastolla U; Porto M; Eduardo Roman MH; Vendruscolo MH
    J Mol Evol; 2003 Mar; 56(3):243-54. PubMed ID: 12612828
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Role of Evolutionary Selection in the Dynamics of Protein Structure Evolution.
    Gilson AI; Marshall-Christensen A; Choi JM; Shakhnovich EI
    Biophys J; 2017 Apr; 112(7):1350-1365. PubMed ID: 28402878
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of sequence periodicity in E. coli proteins: empirical investigation of the "duplication and divergence" theory of protein evolution.
    Gatherer D; McEwan NR
    J Mol Evol; 2003 Aug; 57(2):149-58. PubMed ID: 14562959
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The solution structure of a chimeric LEKTI domain reveals a chameleon sequence.
    Tidow H; Lauber T; Vitzithum K; Sommerhoff CP; Rösch P; Marx UC
    Biochemistry; 2004 Sep; 43(35):11238-47. PubMed ID: 15366933
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural and functional constraints in the evolution of protein families.
    Worth CL; Gong S; Blundell TL
    Nat Rev Mol Cell Biol; 2009 Oct; 10(10):709-20. PubMed ID: 19756040
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.