These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 11319646)

  • 1. In-vivo quantitative hydrolipidic map of perirenal adipose tissue by chemical shift imaging at 4.7 Tesla.
    Lunati E; Marzola P; Nicolato E; Sbarbati A
    Int J Obes Relat Metab Disord; 2001 Apr; 25(4):457-61. PubMed ID: 11319646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo quantitative lipidic map of brown adipose tissue by chemical shift imaging at 4.7 Tesla.
    Lunati E; Marzola P; Nicolato E; Fedrigo M; Villa M; Sbarbati A
    J Lipid Res; 1999 Aug; 40(8):1395-400. PubMed ID: 10428975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hydrolipidic ratio in age-related maturation of adipose tissues.
    Cavallini I; Marino MA; Tonello C; Marzola P; Nicolato E; Fabene PF; Calderan L; Bernardi P; Asperio RM; Nisoli E; Sbarbati A
    Biomed Pharmacother; 2006 Apr; 60(3):139-43. PubMed ID: 16554142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyunsaturated fatty acids mapping by (1)H MR-chemical shift imaging.
    Lunati E; Farace P; Nicolato E; Righetti C; Marzola P; Sbarbati A; Osculati F
    Magn Reson Med; 2001 Nov; 46(5):879-83. PubMed ID: 11675638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of brown adipose tissue by water-fat separated magnetic resonance imaging.
    Romu T; Elander L; Leinhard OD; Lidell ME; Betz MJ; Persson A; Enerbäck S; Borga M
    J Magn Reson Imaging; 2015 Dec; 42(6):1639-45. PubMed ID: 25914213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical-shift imaging utilizing the positional shifts along the readout gradient direction.
    Altbach MI; Trouard TP; Van de Walle R; Theilmann RJ; Clarkson E; Barrett HH; Gmitro AF
    IEEE Trans Med Imaging; 2001 Nov; 20(11):1156-66. PubMed ID: 11700741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue oxygenation mapping by combined chemical shift and T
    Franconi F; Lemaire L; Saint-Jalmes H; Saulnier P
    Magn Reson Med; 2018 Apr; 79(4):1981-1991. PubMed ID: 28833514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical shift imaging at 4.7 tesla of brown adipose tissue.
    Sbarbati A; Guerrini U; Marzola P; Asperio R; Osculati F
    J Lipid Res; 1997 Feb; 38(2):343-7. PubMed ID: 9162753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue water content in rats measured by desiccation.
    Reinoso RF; Telfer BA; Rowland M
    J Pharmacol Toxicol Methods; 1997 Oct; 38(2):87-92. PubMed ID: 9403779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo phenotyping of the ob/ob mouse by magnetic resonance imaging and 1H-magnetic resonance spectroscopy.
    Calderan L; Marzola P; Nicolato E; Fabene PF; Milanese C; Bernardi P; Giordano A; Cinti S; Sbarbati A
    Obesity (Silver Spring); 2006 Mar; 14(3):405-14. PubMed ID: 16648611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton MR chemical shift imaging using double and triple phase contrast acquisition methods.
    Lodes CC; Felmlee JP; Ehman RL; Sehgal CM; Greenleaf JF; Glover GH; Gray JE
    J Comput Assist Tomogr; 1989; 13(5):855-61. PubMed ID: 2778144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of absolute fat mass using an adipose tissue reference signal model.
    Hu HH; Nayak KS
    J Magn Reson Imaging; 2008 Dec; 28(6):1483-91. PubMed ID: 19025936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative diffusion imaging of adipose tissue in the human lower leg at 1.5 T.
    Steidle G; Eibofner F; Schick F
    Magn Reson Med; 2011 Apr; 65(4):1118-24. PubMed ID: 21413077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-fat separation from a single spatiotemporally encoded echo based on nominal k-space peaking and joint regularized estimation.
    Chen Y; Cai C; Zhong J; Chen Z
    Magn Reson Med; 2015 Apr; 73(4):1441-9. PubMed ID: 24798405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D interleaved water and fat image acquisition with chemical-shift correction.
    Kwok WE; Totterman SM; Zhong J
    Magn Reson Med; 2000 Aug; 44(2):322-30. PubMed ID: 10918333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-body continuously moving table fat-water MRI with dynamic B0 shimming at 3 Tesla.
    Sengupta S; Smith DS; Gifford A; Welch EB
    Magn Reson Med; 2016 Jul; 76(1):183-90. PubMed ID: 26198380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of water and fat MR images in a single scan at .35 T using "sandwich" echoes.
    Zhang W; Goldhaber DM; Kramer DM
    J Magn Reson Imaging; 1996; 6(6):909-17. PubMed ID: 8956137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative magnetic resonance imaging of subcutaneous adipose tissue.
    Gensanne D; Josse G; Theunis J; Lagarde JM; Vincensini D
    Skin Res Technol; 2009 Feb; 15(1):45-50. PubMed ID: 19152578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of chemical shift-based water-fat separation with self-calibrated fat spectrum is sensitive to echo times.
    Shi X; Guo H
    Int J Comput Biol Drug Des; 2013; 6(3):244-54. PubMed ID: 23900439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency response of multipoint chemical shift-based spectral decomposition.
    Brodsky EK; Chebrolu VV; Block WF; Reeder SB
    J Magn Reson Imaging; 2010 Oct; 32(4):943-52. PubMed ID: 20882625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.