BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 11319855)

  • 1. Wnt and BMP signaling govern lineage segregation of melanocytes in the avian embryo.
    Jin EJ; Erickson CA; Takada S; Burrus LW
    Dev Biol; 2001 May; 233(1):22-37. PubMed ID: 11319855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural crest development is regulated by the transcription factor Sox9.
    Cheung M; Briscoe J
    Development; 2003 Dec; 130(23):5681-93. PubMed ID: 14522876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Avian transitin expression mirrors glial cell fate restrictions during neural crest development.
    Henion PD; Blyss GK; Luo R; An M; Maynard TM; Cole GJ; Weston JA
    Dev Dyn; 2000 May; 218(1):150-9. PubMed ID: 10822267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The making of a melanocyte: the specification of melanoblasts from the neural crest.
    Thomas AJ; Erickson CA
    Pigment Cell Melanoma Res; 2008 Dec; 21(6):598-610. PubMed ID: 19067969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The delayed entry of thoracic neural crest cells into the dorsolateral path is a consequence of the late emigration of melanogenic neural crest cells from the neural tube.
    Reedy MV; Faraco CD; Erickson CA
    Dev Biol; 1998 Aug; 200(2):234-46. PubMed ID: 9705230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular localization and signaling activity of beta-catenin in migrating neural crest cells.
    de Melker AA; Desban N; Duband JL
    Dev Dyn; 2004 Aug; 230(4):708-26. PubMed ID: 15254905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wnt-frizzled signaling in the induction and differentiation of the neural crest.
    Yanfeng W; Saint-Jeannet JP; Klein PS
    Bioessays; 2003 Apr; 25(4):317-25. PubMed ID: 12655639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multipotent cell fate of neural crest-like cells derived from embryonic stem cells.
    Motohashi T; Aoki H; Chiba K; Yoshimura N; Kunisada T
    Stem Cells; 2007 Feb; 25(2):402-10. PubMed ID: 17038669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wnt-3 and Wnt-3a play different region-specific roles in neural crest development in avians.
    Dongkyun K; Jinsoo S; Jin EJ
    Cell Biol Int; 2010 Jul; 34(7):763-8. PubMed ID: 19947940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperpigmentation in the Silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules.
    Faraco CD; Vaz SA; Pástor MV; Erickson CA
    Dev Dyn; 2001 Mar; 220(3):212-25. PubMed ID: 11241830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BMP signaling is necessary for neural crest cell migration and ganglion formation in the enteric nervous system.
    Goldstein AM; Brewer KC; Doyle AM; Nagy N; Roberts DJ
    Mech Dev; 2005 Jun; 122(6):821-33. PubMed ID: 15905074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of Frizzled-3 and Wnt3a on melanocyte development: in vitro studies on neural crest cells and melanocyte precursor cell lines.
    Chang CH; Tsai RK; Tsai MH; Lin YH; Hirobe T
    J Dermatol Sci; 2014 Aug; 75(2):100-8. PubMed ID: 24815018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specification and migration of melanoblasts at the vagal level and in hyperpigmented Silkie chickens.
    Reedy MV; Faraco CD; Erickson CA
    Dev Dyn; 1998 Dec; 213(4):476-85. PubMed ID: 9853968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two signal transduction pathways involved in the catecholaminergic differentiation of avian neural crest-derived cells in vitro.
    Wu X; Howard MJ
    Mol Cell Neurosci; 2001 Oct; 18(4):394-406. PubMed ID: 11640896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restricted response of mesencephalic neural crest to sympathetic differentiation signals in the trunk.
    Lee VM; Bronner-Fraser M; Baker CV
    Dev Biol; 2005 Feb; 278(1):175-92. PubMed ID: 15649470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lineage-specific requirements of beta-catenin in neural crest development.
    Hari L; Brault V; Kléber M; Lee HY; Ille F; Leimeroth R; Paratore C; Suter U; Kemler R; Sommer L
    J Cell Biol; 2002 Dec; 159(5):867-80. PubMed ID: 12473692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Number of adrenergic and islet-1 immunoreactive cells is increased in avian trunk neural crest cultures in the presence of human recombinant osteogenic protein-1.
    Varley JE; Wehby RG; Rueger DC; Maxwell GD
    Dev Dyn; 1995 Aug; 203(4):434-47. PubMed ID: 7496035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells.
    Lee HY; Kléber M; Hari L; Brault V; Suter U; Taketo MM; Kemler R; Sommer L
    Science; 2004 Feb; 303(5660):1020-3. PubMed ID: 14716020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of roof plate formation by Lmx1a in the developing spinal cord.
    Chizhikov VV; Millen KJ
    Development; 2004 Jun; 131(11):2693-705. PubMed ID: 15148302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling.
    Kléber M; Lee HY; Wurdak H; Buchstaller J; Riccomagno MM; Ittner LM; Suter U; Epstein DJ; Sommer L
    J Cell Biol; 2005 Apr; 169(2):309-20. PubMed ID: 15837799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.