These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11320084)

  • 1. Resolution, detection, and characterization of redox conformers of human HSF1.
    Manalo DJ; Liu AY
    J Biol Chem; 2001 Jun; 276(26):23554-61. PubMed ID: 11320084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Redox-dependent changes in structure and function of hHSF1].
    Lin Z; Huang F; Ma ZF; Xu K; Liu AY
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Jun; 35(6):542-7. PubMed ID: 12796815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-dependent regulation of the conformation and function of human heat shock factor 1.
    Manalo DJ; Lin Z; Liu AY
    Biochemistry; 2002 Feb; 41(8):2580-8. PubMed ID: 11851405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure.
    Zuo J; Baler R; Dahl G; Voellmy R
    Mol Cell Biol; 1994 Nov; 14(11):7557-68. PubMed ID: 7935471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of heat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols.
    Liu H; Lightfoot R; Stevens JL
    J Biol Chem; 1996 Mar; 271(9):4805-12. PubMed ID: 8617749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two distinct disulfide bonds formed in human heat shock transcription factor 1 act in opposition to regulate its DNA binding activity.
    Lu M; Kim HE; Li CR; Kim S; Kwak IJ; Lee YJ; Kim SS; Moon JY; Kim CH; Kim DK; Kang HS; Park JS
    Biochemistry; 2008 Jun; 47(22):6007-15. PubMed ID: 18457423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The vacuolar H+-ATPase of clathrin-coated vesicles is reversibly inhibited by S-nitrosoglutathione.
    Forgac M
    J Biol Chem; 1999 Jan; 274(3):1301-5. PubMed ID: 9880499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cysteine modification on the activity of the cGMP-gated channel from retinal rods.
    Serre V; Ildefonse M; Bennett N
    J Membr Biol; 1995 Jul; 146(2):145-62. PubMed ID: 7473685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox signaling of cardiac HSF1 DNA binding.
    Paroo Z; Meredith MJ; Locke M; Haist JV; Karmazyn M; Noble EG
    Am J Physiol Cell Physiol; 2002 Aug; 283(2):C404-11. PubMed ID: 12107049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pervanadate induces the hyperphosphorylation but not the activation of human heat shock factor 1.
    Park J; Liu AY
    J Cell Physiol; 2000 Dec; 185(3):348-57. PubMed ID: 11056005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple layers of regulation of human heat shock transcription factor 1.
    Zuo J; Rungger D; Voellmy R
    Mol Cell Biol; 1995 Aug; 15(8):4319-30. PubMed ID: 7623826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasting effects of thiol-modulating agents on endothelial NO bioactivity.
    Huang A; Xiao H; Samii JM; Vita JA; Keaney JF
    Am J Physiol Cell Physiol; 2001 Aug; 281(2):C719-25. PubMed ID: 11443071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of glucocorticoid receptor-mediated gene expression by constitutively active heat shock factor 1.
    Jones TJ; Li D; Wolf IM; Wadekar SA; Periyasamy S; Sánchez ER
    Mol Endocrinol; 2004 Mar; 18(3):509-20. PubMed ID: 14673135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of human heat-shock transcription factor 1 reveals a regulatory role for oligomerization in DNA-binding specificity.
    Takemori Y; Enoki Y; Yamamoto N; Fukai Y; Adachi K; Sakurai H
    Biochem J; 2009 Nov; 424(2):253-61. PubMed ID: 19758120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-adrenergic, non-cholinergic relaxation of the bovine retractor penis muscle: role of S-nitrosothiols.
    Liu X; Gillespie JS; Martin W
    Br J Pharmacol; 1994 Apr; 111(4):1287-95. PubMed ID: 8032616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutively active heat shock factor 1 enhances glucose-driven insulin secretion.
    Uchiyama T; Tomono S; Utsugi T; Ohyama Y; Nakamura T; Tomura H; Kawazu S; Okajima F; Kurabayashi M
    Metabolism; 2011 Jun; 60(6):789-98. PubMed ID: 20817212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a signal generated by oxidation of protein thiols that activates the heat shock transcription factor.
    Freeman ML; Borrelli MJ; Syed K; Senisterra G; Stafford DM; Lepock JR
    J Cell Physiol; 1995 Aug; 164(2):356-66. PubMed ID: 7622581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of rat liver microsomal glutathione S-transferase activity by thiol/disulfide exchange.
    Aniya Y; Anders MW
    Arch Biochem Biophys; 1989 Apr; 270(1):330-4. PubMed ID: 2930195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide inhibits c-Jun DNA binding by specifically targeted S-glutathionylation.
    Klatt P; Molina EP; Lamas S
    J Biol Chem; 1999 May; 274(22):15857-64. PubMed ID: 10336489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria.
    Lee KK; Shimoji M; Hossain QS; Sunakawa H; Aniya Y
    Toxicol Appl Pharmacol; 2008 Oct; 232(1):109-18. PubMed ID: 18634816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.