BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 11320123)

  • 1. Genomic analysis of the histidine kinase family in bacteria and archaea.
    Kim DJ; Forst S
    Microbiology (Reading); 2001 May; 147(Pt 5):1197-1212. PubMed ID: 11320123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems.
    Galperin MY; Makarova KS; Wolf YI; Koonin EV
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29263101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The HWE histidine kinases, a new family of bacterial two-component sensor kinases with potentially diverse roles in environmental signaling.
    Karniol B; Vierstra RD
    J Bacteriol; 2004 Jan; 186(2):445-53. PubMed ID: 14702314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution and evolution of multiple-step phosphorelay in prokaryotes: lateral domain recruitment involved in the formation of hybrid-type histidine kinases.
    Zhang W; Shi L
    Microbiology (Reading); 2005 Jul; 151(Pt 7):2159-2173. PubMed ID: 16000707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of two-component signal transduction.
    Koretke KK; Lupas AN; Warren PV; Rosenberg M; Brown JR
    Mol Biol Evol; 2000 Dec; 17(12):1956-70. PubMed ID: 11110912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis.
    Makarova KS; Aravind L; Grishin NV; Rogozin IB; Koonin EV
    Nucleic Acids Res; 2002 Jan; 30(2):482-96. PubMed ID: 11788711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-genome analysis of two-component signal transduction genes in fungal pathogens.
    Catlett NL; Yoder OC; Turgeon BG
    Eukaryot Cell; 2003 Dec; 2(6):1151-61. PubMed ID: 14665450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Nla6S protein of Myxococcus xanthus is the prototype for a new family of bacterial histidine kinases.
    Sarwar Z; Garza AG
    FEMS Microbiol Lett; 2012 Oct; 335(2):86-94. PubMed ID: 22812452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The histidine protein kinase superfamily.
    Grebe TW; Stock JB
    Adv Microb Physiol; 1999; 41():139-227. PubMed ID: 10500846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and classification of a two-component system based on domain structures in bacteria and differences in domain structure between Gram-positive and Gram-negative bacteria.
    Kim S; Hirakawa H; Muta S; Kuhara S
    Biosci Biotechnol Biochem; 2010; 74(4):716-20. PubMed ID: 20378989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily.
    Leonard CJ; Aravind L; Koonin EV
    Genome Res; 1998 Oct; 8(10):1038-47. PubMed ID: 9799791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crosstalk and the evolution of specificity in two-component signaling.
    Rowland MA; Deeds EJ
    Proc Natl Acad Sci U S A; 2014 Apr; 111(15):5550-5. PubMed ID: 24706803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angucycline antibiotic waldiomycin recognizes common structural motif conserved in bacterial histidine kinases.
    Eguchi Y; Okajima T; Tochio N; Inukai Y; Shimizu R; Ueda S; Shinya S; Kigawa T; Fukamizo T; Igarashi M; Utsumi R
    J Antibiot (Tokyo); 2017 Mar; 70(3):251-258. PubMed ID: 27999439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing a synthetic signal transduction system in plants.
    Morey KJ; Antunes MS; Albrecht KD; Bowen TA; Troupe JF; Havens KL; Medford JI
    Methods Enzymol; 2011; 497():581-602. PubMed ID: 21601104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity-based ATP analog probes for bacterial histidine kinases.
    Lembke HK; Carlson EE
    Methods Enzymol; 2022; 664():59-84. PubMed ID: 35331379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal Sensing and Transduction by Histidine Kinases as Unveiled through Studies on a Temperature Sensor.
    Abriata LA; Albanesi D; Dal Peraro M; de Mendoza D
    Acc Chem Res; 2017 Jun; 50(6):1359-1366. PubMed ID: 28475313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-histidine kinases in basidiomycete fungi.
    Lavín JL; Sarasola-Puente V; Ramírez L; Pisabarro AG; Oguiza JA
    C R Biol; 2014 Feb; 337(2):111-6. PubMed ID: 24581805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea.
    Coombs JM; Barkay T
    Appl Environ Microbiol; 2005 Nov; 71(11):7083-91. PubMed ID: 16269744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid histidine kinases in pathogenic fungi.
    Defosse TA; Sharma A; Mondal AK; Dugé de Bernonville T; Latgé JP; Calderone R; Giglioli-Guivarc'h N; Courdavault V; Clastre M; Papon N
    Mol Microbiol; 2015 Mar; 95(6):914-24. PubMed ID: 25560420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics.
    Smith DR; Doucette-Stamm LA; Deloughery C; Lee H; Dubois J; Aldredge T; Bashirzadeh R; Blakely D; Cook R; Gilbert K; Harrison D; Hoang L; Keagle P; Lumm W; Pothier B; Qiu D; Spadafora R; Vicaire R; Wang Y; Wierzbowski J; Gibson R; Jiwani N; Caruso A; Bush D; Reeve JN
    J Bacteriol; 1997 Nov; 179(22):7135-55. PubMed ID: 9371463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.