These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 11320226)
1. Acclimation of photosynthetic microorganisms to changing ambient CO2 concentration. Kaplan A; Helman Y; Tchernov D; Reinhold L Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4817-8. PubMed ID: 11320226 [No Abstract] [Full Text] [Related]
2. Structural analysis of altered large-subunit loop-6/carboxy-terminus interactions that influence catalytic efficiency and CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Karkehabadi S; Satagopan S; Taylor TC; Spreitzer RJ; Andersson I Biochemistry; 2007 Oct; 46(39):11080-9. PubMed ID: 17824672 [TBL] [Abstract][Full Text] [Related]
3. Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Fukuzawa H; Miura K; Ishizaki K; Kucho KI; Saito T; Kohinata T; Ohyama K Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5347-52. PubMed ID: 11287669 [TBL] [Abstract][Full Text] [Related]
4. [Mechanism of CO2-responsive transcriptional regulation in photosynthetic organisms: carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii]. Fukuzawa H; Yamano T Tanpakushitsu Kakusan Koso; 2005 Jul; 50(8):958-65. PubMed ID: 16001801 [No Abstract] [Full Text] [Related]
5. Elucidation and genetic intervention of CO Mallikarjuna K; Narendra K; Ragalatha R; Rao BJ J Biosci; 2020; 45():. PubMed ID: 33051409 [TBL] [Abstract][Full Text] [Related]
6. CO2 limitation induces specific redox-dependent protein phosphorylation in Chlamydomonas reinhardtii. Turkina MV; Blanco-Rivero A; Vainonen JP; Vener AV; Villarejo A Proteomics; 2006 May; 6(9):2693-704. PubMed ID: 16572472 [TBL] [Abstract][Full Text] [Related]
7. Intraflagellar transport in the unicellular green alga, Chlamydomonas reinhardtii. Cole DG Protist; 2003 Jul; 154(2):181-91. PubMed ID: 13677447 [No Abstract] [Full Text] [Related]
8. A Spatial Interactome Reveals the Protein Organization of the Algal CO Mackinder LCM; Chen C; Leib RD; Patena W; Blum SR; Rodman M; Ramundo S; Adams CM; Jonikas MC Cell; 2017 Sep; 171(1):133-147.e14. PubMed ID: 28938113 [TBL] [Abstract][Full Text] [Related]
9. MRL1, a conserved Pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis. Johnson X; Wostrikoff K; Finazzi G; Kuras R; Schwarz C; Bujaldon S; Nickelsen J; Stern DB; Wollman FA; Vallon O Plant Cell; 2010 Jan; 22(1):234-48. PubMed ID: 20097872 [TBL] [Abstract][Full Text] [Related]
10. Expression activation and functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas reinhardtii. Gao H; Wang Y; Fei X; Wright DA; Spalding MH Plant J; 2015 Apr; 82(1):1-11. PubMed ID: 25660294 [TBL] [Abstract][Full Text] [Related]
11. The internal plumbing of algal chloroplasts. Meyer M; Griffiths H Elife; 2015 Jan; 4():. PubMed ID: 25584626 [TBL] [Abstract][Full Text] [Related]
12. Two adjacent nuclear genes are required for functional complementation of a chloroplast trans-splicing mutant from Chlamydomonas reinhardtii. Balczun C; Bunse A; Hahn D; Bennoun P; Nickelsen J; Kück U Plant J; 2005 Sep; 43(5):636-48. PubMed ID: 16115062 [TBL] [Abstract][Full Text] [Related]
13. The Cia5 gene controls formation of the carbon concentrating mechanism in Chlamydomonas reinhardtii. Xiang Y; Zhang J; Weeks DP Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5341-6. PubMed ID: 11309511 [TBL] [Abstract][Full Text] [Related]
14. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components. Atkinson N; Feike D; Mackinder LC; Meyer MT; Griffiths H; Jonikas MC; Smith AM; McCormick AJ Plant Biotechnol J; 2016 May; 14(5):1302-15. PubMed ID: 26538195 [TBL] [Abstract][Full Text] [Related]
15. Identification and characterization of a solute carrier, CIA8, involved in inorganic carbon acclimation in Chlamydomonas reinhardtii. Machingura MC; Bajsa-Hirschel J; Laborde SM; Schwartzenburg JB; Mukherjee B; Mukherjee A; Pollock SV; Förster B; Price GD; Moroney JV J Exp Bot; 2017 Jun; 68(14):3879-3890. PubMed ID: 28633328 [TBL] [Abstract][Full Text] [Related]
16. LCI1, a Chlamydomonas reinhardtii plasma membrane protein, functions in active CO Kono A; Spalding MH Plant J; 2020 Jun; 102(6):1127-1141. PubMed ID: 32248584 [TBL] [Abstract][Full Text] [Related]
17. Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity. Dubini A; Mus F; Seibert M; Grossman AR; Posewitz MC J Biol Chem; 2009 Mar; 284(11):7201-13. PubMed ID: 19117946 [TBL] [Abstract][Full Text] [Related]
18. Role of a novel photosystem II-associated carbonic anhydrase in photosynthetic carbon assimilation in Chlamydomonas reinhardtii. Park YI; Karlsson J; Rojdestvenski I; Pronina N; Klimov V; Oquist G; Samuelsson G FEBS Lett; 1999 Feb; 444(1):102-5. PubMed ID: 10037156 [TBL] [Abstract][Full Text] [Related]
19. Isolation and characterisation of Chlamydomonas reinhardtii mutants with an impaired CO2-concentrating mechanism. Thyssen C; Hermes M; Sültemeyer D Planta; 2003 May; 217(1):102-12. PubMed ID: 12721854 [TBL] [Abstract][Full Text] [Related]
20. The Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment. Pollock SV; Prout DL; Godfrey AC; Lemaire SD; Moroney JV Plant Mol Biol; 2004 Sep; 56(1):125-32. PubMed ID: 15604732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]