BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 11320239)

  • 1. Solution 19F nuclear Overhauser effects in structural studies of the cytoplasmic domain of mammalian rhodopsin.
    Loewen MC; Klein-Seetharaman J; Getmanova EV; Reeves PJ; Schwalbe H; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4888-92. PubMed ID: 11320239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR.
    Klein-Seetharaman J; Getmanova EV; Loewen MC; Reeves PJ; Khorana HG
    Proc Natl Acad Sci U S A; 1999 Nov; 96(24):13744-9. PubMed ID: 10570143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between cysteine pairs engineered in cytoplasmic loops 1, 3, and 4.
    Cai K; Klein-Seetharaman J; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 2001 Oct; 40(42):12479-85. PubMed ID: 11601971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR spectroscopy of phosphorylated wild-type rhodopsin: mobility of the phosphorylated C-terminus of rhodopsin in the dark and upon light activation.
    Getmanova E; Patel AB; Klein-Seetharaman J; Loewen MC; Reeves PJ; Friedman N; Sheves M; Smith SO; Khorana HG
    Biochemistry; 2004 Feb; 43(4):1126-33. PubMed ID: 14744159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between Cys316 and engineered cysteines in cytoplasmic loop 1.
    Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 2001 Oct; 40(42):12472-8. PubMed ID: 11601970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-cysteine substitution mutants at amino acid positions 55-75, the sequence connecting the cytoplasmic ends of helices I and II in rhodopsin: reactivity of the sulfhydryl groups and their derivatives identifies a tertiary structure that changes upon light-activation.
    Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 1999 Jun; 38(25):7938-44. PubMed ID: 10387036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution NMR spectroscopy of [alpha -15N]lysine-labeled rhodopsin: The single peak observed in both conventional and TROSY-type HSQC spectra is ascribed to Lys-339 in the carboxyl-terminal peptide sequence.
    Klein-Seetharaman J; Reeves PJ; Loewen MC; Getmanova EV; Chung J; Schwalbe H; Wright PE; Khorana HG
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3452-7. PubMed ID: 11904408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cysteine substitution mutants at amino acid positions 306-321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: sulfhydryl reactivity and transducin activation reveal a tertiary structure.
    Cai K; Klein-Seetharaman J; Farrens D; Zhang C; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 1999 Jun; 38(25):7925-30. PubMed ID: 10387034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study.
    Altenbach C; Cai K; Khorana HG; Hubbell WL
    Biochemistry; 1999 Jun; 38(25):7931-7. PubMed ID: 10387035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tertiary interactions between transmembrane segments 3 and 5 near the cytoplasmic side of rhodopsin.
    Yu H; Oprian DD
    Biochemistry; 1999 Sep; 38(37):12033-40. PubMed ID: 10508407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function in rhodopsin: Mass spectrometric identification of the abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa mutants.
    Hwa J; Klein-Seetharaman J; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4872-6. PubMed ID: 11320236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP
    J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study.
    Altenbach C; Yang K; Farrens DL; Farahbakhsh ZT; Khorana HG; Hubbell WL
    Biochemistry; 1996 Sep; 35(38):12470-8. PubMed ID: 8823182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation.
    Fritze O; Filipek S; Kuksa V; Palczewski K; Hofmann KP; Ernst OP
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2290-5. PubMed ID: 12601165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function in rhodopsin. Single cysteine substitution mutants in the cytoplasmic interhelical E-F loop region show position-specific effects in transducin activation.
    Yang K; Farrens DL; Hubbell WL; Khorana HG
    Biochemistry; 1996 Sep; 35(38):12464-9. PubMed ID: 8823181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function in rhodopsin: further elucidation of the role of the intradiscal cysteines, Cys-110, -185, and -187, in rhodopsin folding and function.
    Hwa J; Reeves PJ; Klein-Seetharaman J; Davidson F; Khorana HG
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1932-5. PubMed ID: 10051572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function in rhodopsin. Cysteines 65 and 316 are in proximity in a rhodopsin mutant as indicated by disulfide formation and interactions between attached spin labels.
    Yang K; Farrens DL; Altenbach C; Farahbakhsh ZT; Hubbell WL; Khorana HG
    Biochemistry; 1996 Nov; 35(45):14040-6. PubMed ID: 8916888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State-dependent disulfide cross-linking in rhodopsin.
    Yu H; Kono M; Oprian DD
    Biochemistry; 1999 Sep; 38(37):12028-32. PubMed ID: 10508406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disulfide bonding arrangements in active forms of the somatomedin B domain of human vitronectin.
    Kamikubo Y; De Guzman R; Kroon G; Curriden S; Neels JG; Churchill MJ; Dawson P; OƂdziej S; Jagielska A; Scheraga HA; Loskutoff DJ; Dyson HJ
    Biochemistry; 2004 Jun; 43(21):6519-34. PubMed ID: 15157085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin.
    Karnik SS; Sakmar TP; Chen HB; Khorana HG
    Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8459-63. PubMed ID: 3186735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.