These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11321002)

  • 1. Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience.
    Burgar CG; Lum PS; Shor PC; Machiel Van der Loos HF
    J Rehabil Res Dev; 2000; 37(6):663-73. PubMed ID: 11321002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proof of concept study investigating the feasibility of combining iPAM robot assisted rehabilitation with functional electrical stimulation to deliver whole arm exercise in stroke survivors.
    O'Connor RJ; Jackson A; Makower SG; Cozens A; Levesley M
    J Med Eng Technol; 2014; 39(7):411-8. PubMed ID: 26414146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.
    Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of motor recovery in chronic and subacute stroke patients following a robot-aided training.
    Mazzoleni S; Puzzolante L; Zollo L; Dario P; Posteraro F
    IEEE Trans Haptics; 2014; 7(2):175-80. PubMed ID: 24968381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation.
    Rosati G; Gallina P; Masiero S
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):560-9. PubMed ID: 18198714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke.
    Song R; Tong KY; Hu X; Li L
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):371-9. PubMed ID: 18701384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot-aided sensorimotor training in stroke rehabilitation.
    Volpe BT; Krebs HI; Hogan N
    Adv Neurol; 2003; 92():429-33. PubMed ID: 12760210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation.
    Ren Y; Kang SH; Park HS; Wu YN; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):490-9. PubMed ID: 23096119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke.
    Lewis GN; Perreault EJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):595-604. PubMed ID: 19666342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RUPERT closed loop control design.
    Zhang H; Balasubramanian S; Wei R; Austin H; Buchanan S; Herman R; He J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3686-9. PubMed ID: 21097049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective.
    Gassert R; Dietz V
    J Neuroeng Rehabil; 2018 Jun; 15(1):46. PubMed ID: 29866106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects.
    Sheng B; Zhang Y; Meng W; Deng C; Xie S
    Med Eng Phys; 2016 Jul; 38(7):587-606. PubMed ID: 27117423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailor-made rehabilitation approach using multiple types of hybrid assistive limb robots for acute stroke patients: A pilot study.
    Fukuda H; Morishita T; Ogata T; Saita K; Hyakutake K; Watanabe J; Shiota E; Inoue T
    Assist Technol; 2016; 28(1):53-6. PubMed ID: 26478988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New horizons for robot-assisted therapy in pediatrics.
    Fasoli SE; Ladenheim B; Mast J; Krebs HI
    Am J Phys Med Rehabil; 2012 Nov; 91(11 Suppl 3):S280-9. PubMed ID: 23080043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human-robot-interaction control for orthoses with pneumatic soft-actuators--concept and initial trails.
    Baiden D; Ivlev O
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650353. PubMed ID: 24187172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide.
    Reinkensmeyer DJ; Kahn LE; Averbuch M; McKenna-Cole A; Schmit BD; Rymer WZ
    J Rehabil Res Dev; 2000; 37(6):653-62. PubMed ID: 11321001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Socially assistive robotics for post-stroke rehabilitation.
    Matarić MJ; Eriksson J; Feil-Seifer DJ; Winstein CJ
    J Neuroeng Rehabil; 2007 Feb; 4():5. PubMed ID: 17309795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [NEW OPPORTUNITIES IN NEURO-REHABILITATION: ROBOT MEDIATED THERAPY IN CONDITONS POST CENTRAL NERVOUS SYSTEM IMPAIRMENTS].
    Fazekas G; Tavaszi I; Tóth A
    Ideggyogy Sz; 2016 Mar; 69(5-6):148-54. PubMed ID: 27468604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of upper limb robot-assisted therapy on motor recovery of subacute stroke patients: a kinematic approach.
    Mazzoleni S; Carrozza MC; Sale P; Franceschini M; Posteraro F; Tiboni M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650503. PubMed ID: 24187318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of the first robotic scale for the clinical assessment of upper extremity motor impairments in stroke patients.
    Einav O; Geva D; Yoeli D; Kerzhner M; Mauritz KH
    Top Stroke Rehabil; 2011 Oct; 18 Suppl 1():587-98. PubMed ID: 22120028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.