These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1132148)

  • 1. Glucose consumption by red cells of diabetic patients and normal subjects. Effect of ethanol.
    Phillips GB; Mendershausen B
    Clin Chim Acta; 1975 Jun; 61(2):175-82. PubMed ID: 1132148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting pentose phosphate pathway activity in human red cells.
    Davidson WD; Tanaka KR
    Br J Haematol; 1972 Sep; 23(3):371-85. PubMed ID: 5080355
    [No Abstract]   [Full Text] [Related]  

  • 3. Incubation studies on human red cells utilizing glucose or inosine under various conditions.
    Jablonska E; Bishop C
    J Lab Clin Med; 1975 Oct; 86(4):605-15. PubMed ID: 240898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and clinical studies on the reduction of erythrocyte sorbitol-glucose ratios by ascorbic acid in diabetes mellitus.
    Wang H; Zhang ZB; Wen RR; Chen JW
    Diabetes Res Clin Pract; 1995 Apr; 28(1):1-8. PubMed ID: 7587907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythrocyte metabolism in normal and glutathione-deficient sheep.
    Agar NS; O'Shea T
    Am J Vet Res; 1975 Jul; 36(7):953-5. PubMed ID: 238440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of physiologic concentrations of lactate, pyruvate and ascorbate on glucose metabolism in unstressed and oxidatively stressed human red blood cells.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1983 Oct; 32(19):2891-902. PubMed ID: 6626261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ascorbic acid metabolism in diabetes mellitus.
    Som S; Basu S; Mukherjee D; Deb S; Choudhury PR; Mukherjee S; Chatterjee SN; Chatterjee IB
    Metabolism; 1981 Jun; 30(6):572-7. PubMed ID: 7231193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylene blue-mediated hexose monophosphate shunt stimulation in human red blood cells in vitro: independence from intracellular oxidative injury.
    Baird JK
    Int J Biochem; 1984; 16(10):1053-8. PubMed ID: 6394402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of oxidant stress in cultured endothelial cells by methylene blue: protective effects of glucose and ascorbic acid.
    May JM; Qu ZC; Whitesell RR
    Biochem Pharmacol; 2003 Sep; 66(5):777-84. PubMed ID: 12948858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of fluxes through the pentose phosphate pathway in erythrocytes from individuals with sickle cell anemia by carbon-13 nuclear magnetic resonance spectroscopy.
    Schrader MC; Simplaceanu V; Ho C
    Biochim Biophys Acta; 1993 Sep; 1182(2):179-88. PubMed ID: 8357849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microcalorimetric measurements of heat production in human erythrocytes. Heat effect during methylene blue stimulation.
    Monti M; Wadsö I
    Scand J Clin Lab Invest; 1976 Sep; 36(5):431-6. PubMed ID: 10619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose metabolism of oxidatively stressed human red blood cells incubated in plasma or medium containing physiologic concentrations of lactate, pyruvate and ascorbate.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1984 May; 33(9):1417-21. PubMed ID: 6732859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of o-salicylate upon pentose phosphate pathway activity in normal and G6PD-deficient red cells.
    Worathumrong N; Grimes AJ
    Br J Haematol; 1975 Jun; 30(2):225-31. PubMed ID: 35
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Influence of tetracycline and ascorbic acid on the velocity of methemoglobin transformation in red blood cells suspended in vitro in a glucose and methylene blue medium].
    Neliba P; Nosek J
    Cesk Fysiol; 1970 Sep; 19(1):109-11. PubMed ID: 5507400
    [No Abstract]   [Full Text] [Related]  

  • 15. The influence of phenazinium upon glycolysis and the pentose pathway in human red cells.
    Anstall HB; List-Young B; Trujillo JM; Russell WO
    Biochem Pharmacol; 1966 Jul; 15(7):998-1000. PubMed ID: 5967914
    [No Abstract]   [Full Text] [Related]  

  • 16. Continuous measurement of pentose phosphate pathway activity in erythrocytes. An ionization chamber method.
    Davidson WD; Tanaka KR
    J Lab Clin Med; 1969 Jan; 73(1):173-80. PubMed ID: 5762160
    [No Abstract]   [Full Text] [Related]  

  • 17. Low Red Blood Cell Vitamin C Concentrations Induce Red Blood Cell Fragility: A Link to Diabetes Via Glucose, Glucose Transporters, and Dehydroascorbic Acid.
    Tu H; Li H; Wang Y; Niyyati M; Wang Y; Leshin J; Levine M
    EBioMedicine; 2015 Nov; 2(11):1735-50. PubMed ID: 26870799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexose monophosphate shunt metabolism in sheep: comparison of fetal, newborn and adult erythrocytes.
    Noble NA; Kuwashima LH; Davidson WD; Nathanielsz PW; Tanaka KR
    J Dev Physiol; 1981 Dec; 3(6):333-41. PubMed ID: 7347348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin-mediated glucose disposal in type I diabetes: evidence for insulin resistance.
    Del Prato S; Nosadini R; Tiengo A; Tessari P; Avogaro A; Trevisan R; Valerio A; Muggeo M; Cobelli C; Toffolo G
    J Clin Endocrinol Metab; 1983 Nov; 57(5):904-10. PubMed ID: 6352727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A carbon-13 nuclear magnetic resonance investigation of the metabolic fluxes associated with glucose metabolism in human erythrocytes.
    Schrader MC; Eskey CJ; Simplaceanu V; Ho C
    Biochim Biophys Acta; 1993 Sep; 1182(2):162-78. PubMed ID: 8357848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.