These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Bacterial Communities and Functional Genes Stimulated During Anaerobic Arsenite Oxidation and Nitrate Reduction in a Paddy Soil. Li X; Qiao J; Li S; Häggblom MM; Li F; Hu M Environ Sci Technol; 2020 Feb; 54(4):2172-2181. PubMed ID: 31773946 [TBL] [Abstract][Full Text] [Related]
10. Assessing nitrification and denitrification in a paddy soil with different water dynamics and applied liquid cattle waste using the ¹⁵N isotopic technique. Zhou S; Sakiyama Y; Riya S; Song X; Terada A; Hosomi M Sci Total Environ; 2012 Jul; 430():93-100. PubMed ID: 22634555 [TBL] [Abstract][Full Text] [Related]
11. Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria. Muehe EM; Gerhardt S; Schink B; Kappler A FEMS Microbiol Ecol; 2009 Dec; 70(3):335-43. PubMed ID: 19732145 [TBL] [Abstract][Full Text] [Related]
12. Biological oxidation of ammoniacal fertilizers as affected by the physical properties of soil. Hosny I Zentralbl Bakteriol Naturwiss; 1979; 134(6):513-27. PubMed ID: 232957 [TBL] [Abstract][Full Text] [Related]
13. Effect of nitrate addition on reductive transformation of pentachlorophenol in paddy soil in relation to iron(III) reduction. Yu HY; Wang YK; Chen PC; Li FB; Chen MJ; Hu M; Ouyang X J Environ Manage; 2014 Jan; 132():42-8. PubMed ID: 24286925 [TBL] [Abstract][Full Text] [Related]
14. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence. Ding LJ; An XL; Li S; Zhang GL; Zhu YG Environ Sci Technol; 2014 Sep; 48(18):10641-7. PubMed ID: 25158120 [TBL] [Abstract][Full Text] [Related]
15. Anoxia over the western continental shelf of India: bacterial indications of intrinsic nitrification feeding denitrification. Krishnan KP; Fernandes SO; Loka Bharathi PA; Krishna Kumari L; Nair S; Pratihary AK; Rao BR Mar Environ Res; 2008 Jun; 65(5):445-55. PubMed ID: 18358526 [TBL] [Abstract][Full Text] [Related]
16. Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment. Laufer K; Røy H; Jørgensen BB; Kappler A Appl Environ Microbiol; 2016 Oct; 82(20):6120-6131. PubMed ID: 27496777 [TBL] [Abstract][Full Text] [Related]
17. Influence of crop residue-induced Fe-DOC complexation on nitrate reduction in paddy soil. Xing J; Wang Q; Yang L; Liu Y; Wang P; Rene ER; Faizan M; Joseph A; Tang J; Wang Y; Zhu N Sci Total Environ; 2024 Jun; 930():172510. PubMed ID: 38641119 [TBL] [Abstract][Full Text] [Related]
18. [Time-spatial variability of ammonium and nitrate in farmland soil of Taihu Lake region]. Chen XM; Wu HS; Sun JH Huan Jing Ke Xue; 2006 Jun; 27(6):1217-22. PubMed ID: 16921965 [TBL] [Abstract][Full Text] [Related]
19. Ammonia transformations and abundance of ammonia oxidizers in a clay soil underlying a manure pond. Sher Y; Baram S; Dahan O; Ronen Z; Nejidat A FEMS Microbiol Ecol; 2012 Jul; 81(1):145-55. PubMed ID: 22385337 [TBL] [Abstract][Full Text] [Related]
20. The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved. Luo D; Meng X; Zheng N; Li Y; Yao H; Chapman SJ Sci Total Environ; 2021 Sep; 788():147773. PubMed ID: 34029806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]