These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 11321540)

  • 1. Nitrate-dependent iron(II) oxidation in paddy soil.
    Ratering S; Schnell S
    Environ Microbiol; 2001 Feb; 3(2):100-9. PubMed ID: 11321540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relevance of ammonium oxidation within biological soil crust communities.
    Johnson SL; Budinoff CR; Belnap J; Garcia-Pichel F
    Environ Microbiol; 2005 Jan; 7(1):1-12. PubMed ID: 15643930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbiology of flooded rice paddies.
    Liesack W; Schnell S; Revsbech NP
    FEMS Microbiol Rev; 2000 Dec; 24(5):625-45. PubMed ID: 11077155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic biooxidation of Fe(II) by Dechlorosoma suillum.
    Lack JG; Chaudhuri SK; Chakraborty R; Achenbach LA; Coates JD
    Microb Ecol; 2002 May; 43(4):424-31. PubMed ID: 11953812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic microbial Fe(II) oxidation and Fe(III) reduction in coastal marine sediments controlled by organic carbon content.
    Laufer K; Byrne JM; Glombitza C; Schmidt C; Jørgensen BB; Kappler A
    Environ Microbiol; 2016 Sep; 18(9):3159-74. PubMed ID: 27234371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissimilatory Nitrate Reduction to Ammonium and Responsible Microbes in Japanese Rice Paddy Soil.
    Nojiri Y; Kaneko Y; Azegami Y; Shiratori Y; Ohte N; Senoo K; Otsuka S; Isobe K
    Microbes Environ; 2020; 35(4):. PubMed ID: 33028782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrate Stimulates Anaerobic Microbial Arsenite Oxidation in Paddy Soils.
    Zhang J; Zhao S; Xu Y; Zhou W; Huang K; Tang Z; Zhao FJ
    Environ Sci Technol; 2017 Apr; 51(8):4377-4386. PubMed ID: 28358982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial Communities and Functional Genes Stimulated During Anaerobic Arsenite Oxidation and Nitrate Reduction in a Paddy Soil.
    Li X; Qiao J; Li S; Häggblom MM; Li F; Hu M
    Environ Sci Technol; 2020 Feb; 54(4):2172-2181. PubMed ID: 31773946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing nitrification and denitrification in a paddy soil with different water dynamics and applied liquid cattle waste using the ¹⁵N isotopic technique.
    Zhou S; Sakiyama Y; Riya S; Song X; Terada A; Hosomi M
    Sci Total Environ; 2012 Jul; 430():93-100. PubMed ID: 22634555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria.
    Muehe EM; Gerhardt S; Schink B; Kappler A
    FEMS Microbiol Ecol; 2009 Dec; 70(3):335-43. PubMed ID: 19732145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological oxidation of ammoniacal fertilizers as affected by the physical properties of soil.
    Hosny I
    Zentralbl Bakteriol Naturwiss; 1979; 134(6):513-27. PubMed ID: 232957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nitrate addition on reductive transformation of pentachlorophenol in paddy soil in relation to iron(III) reduction.
    Yu HY; Wang YK; Chen PC; Li FB; Chen MJ; Hu M; Ouyang X
    J Environ Manage; 2014 Jan; 132():42-8. PubMed ID: 24286925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence.
    Ding LJ; An XL; Li S; Zhang GL; Zhu YG
    Environ Sci Technol; 2014 Sep; 48(18):10641-7. PubMed ID: 25158120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anoxia over the western continental shelf of India: bacterial indications of intrinsic nitrification feeding denitrification.
    Krishnan KP; Fernandes SO; Loka Bharathi PA; Krishna Kumari L; Nair S; Pratihary AK; Rao BR
    Mar Environ Res; 2008 Jun; 65(5):445-55. PubMed ID: 18358526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment.
    Laufer K; Røy H; Jørgensen BB; Kappler A
    Appl Environ Microbiol; 2016 Oct; 82(20):6120-6131. PubMed ID: 27496777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of crop residue-induced Fe-DOC complexation on nitrate reduction in paddy soil.
    Xing J; Wang Q; Yang L; Liu Y; Wang P; Rene ER; Faizan M; Joseph A; Tang J; Wang Y; Zhu N
    Sci Total Environ; 2024 Jun; 930():172510. PubMed ID: 38641119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Time-spatial variability of ammonium and nitrate in farmland soil of Taihu Lake region].
    Chen XM; Wu HS; Sun JH
    Huan Jing Ke Xue; 2006 Jun; 27(6):1217-22. PubMed ID: 16921965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonia transformations and abundance of ammonia oxidizers in a clay soil underlying a manure pond.
    Sher Y; Baram S; Dahan O; Ronen Z; Nejidat A
    FEMS Microbiol Ecol; 2012 Jul; 81(1):145-55. PubMed ID: 22385337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved.
    Luo D; Meng X; Zheng N; Li Y; Yao H; Chapman SJ
    Sci Total Environ; 2021 Sep; 788():147773. PubMed ID: 34029806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.