BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 11321952)

  • 41. Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide.
    Pena ME; Korfiatis GP; Patel M; Lippincott L; Meng X
    Water Res; 2005 Jun; 39(11):2327-37. PubMed ID: 15896821
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Arsenic sorption onto laterite iron concretions: temperature effect.
    Partey F; Norman D; Ndur S; Nartey R
    J Colloid Interface Sci; 2008 May; 321(2):493-500. PubMed ID: 18346752
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater.
    Ciardelli MC; Xu H; Sahai N
    Water Res; 2008 Feb; 42(3):615-24. PubMed ID: 17919678
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel fiber-packed column for on-line preconcentration and speciation analysis of chromium in drinking water with flame atomic absorption spectrometry.
    Monasterio RP; Altamirano JC; Martínez LD; Wuilloud RG
    Talanta; 2009 Feb; 77(4):1290-4. PubMed ID: 19084637
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluating a drinking-water waste by-product as a novel sorbent for arsenic.
    Makris KC; Sarkar D; Datta R
    Chemosphere; 2006 Jul; 64(5):730-41. PubMed ID: 16405955
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Arsenic remediation from drinking water using Fenton's reagent with slow sand filter.
    Jasudkar D; Rakhunde R; Deshpande L; Labhasetwar P; Juneja HD
    Bull Environ Contam Toxicol; 2012 Dec; 89(6):1231-4. PubMed ID: 23052589
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry.
    Chen CY; Wen TY; Wang GS; Cheng HW; Lin YH; Lien GW
    Sci Total Environ; 2007 Jun; 378(3):352-65. PubMed ID: 17428520
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Study on the denitrification of drinking water with upflow anaerobic sludge blanket reactor].
    Tan Y; Luo Q
    Wei Sheng Yan Jiu; 2002 Feb; 31(1):19-21. PubMed ID: 12561564
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biosorptive removal of arsenic from drinking water.
    Pandey PK; Choubey S; Verma Y; Pandey M; Chandrashekhar K
    Bioresour Technol; 2009 Jan; 100(2):634-7. PubMed ID: 18809315
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An investigation into advanced oxidation of three chlorophenoxy pesticides in surface water.
    MacAdam J; Parsons SA
    Water Sci Technol; 2009; 59(8):1665-71. PubMed ID: 19403981
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Removal of arsenic from groundwater by granular titanium dioxide adsorbent.
    Bang S; Patel M; Lippincott L; Meng X
    Chemosphere; 2005 Jul; 60(3):389-97. PubMed ID: 15924958
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of antimony(V) and antimony(III) from drinking water by coagulation-flocculation-sedimentation (CFS).
    Guo X; Wu Z; He M
    Water Res; 2009 Sep; 43(17):4327-35. PubMed ID: 19595424
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Treatment of diglyme containing wastewater by advanced oxidation--process design and optimisation.
    Grossmann D; Köser H; Kretschmer R; Porobin M
    Water Sci Technol; 2001; 44(5):287-93. PubMed ID: 11695472
    [TBL] [Abstract][Full Text] [Related]  

  • 55. UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water.
    Toor R; Mohseni M
    Chemosphere; 2007 Feb; 66(11):2087-95. PubMed ID: 17095044
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ozone treatment and the depletion of detectable pharmaceuticals and atrazine herbicide in drinking water sourced from the upper Detroit River, Ontario, Canada.
    Hua W; Bennett ER; Letcher RJ
    Water Res; 2006 Jul; 40(12):2259-66. PubMed ID: 16777173
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A drinking water utility's perspective on bromide, bromate, and ozonation.
    Bonacquisti TP
    Toxicology; 2006 Apr; 221(2-3):145-8. PubMed ID: 16545515
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine.
    Sorlini S; Gialdini F
    Water Res; 2010 Nov; 44(19):5653-9. PubMed ID: 20638704
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Pilot scale study on emergent treatment for As (III) pollution in water source].
    Yao JJ; Gao NY; Xia SJ; Chen BB
    Huan Jing Ke Xue; 2010 Feb; 31(2):324-30. PubMed ID: 20391697
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water.
    Zhang K; Dwivedi V; Chi C; Wu J
    J Hazard Mater; 2010 Oct; 182(1-3):162-8. PubMed ID: 20580161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.