These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 11322468)

  • 21. Reduction in ulnar pressure distribution when walking with forearm crutches with a novel cuff design: Cross-sectional intervention study on the biomechanical efficacy of an ulnar recess.
    Molteni P; Hügle T; Hügle M; Nüesch C; Mündermann A
    Assist Technol; 2018; 30(1):34-38. PubMed ID: 27717292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy expenditure of ambulation using the Sure-Gait crutch and the standard axillary crutch.
    Annesley AL; Almada-Norfleet M; Arnall DA; Cornwall MW
    Phys Ther; 1990 Jan; 70(1):18-23. PubMed ID: 2294527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A model-based approach to stabilizing crutch supported paraplegic standing by artificial hip joint stiffness.
    van der Spek JH; Veltink PH; Hermens HJ; Koopman BF; Boom HB
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):443-51. PubMed ID: 14960122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prospective clinical evaluation of a novel anatomic cuff for forearm crutches in patients with osteoarthritis.
    Hügle T; Arnieri A; Bünter M; Schären S; Mündermann A
    BMC Musculoskelet Disord; 2017 Mar; 18(1):110. PubMed ID: 28292295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crutch length: effect on energy cost and activity intensity in non-weight-bearing ambulation.
    Mullis R; Dent RM
    Arch Phys Med Rehabil; 2000 May; 81(5):569-72. PubMed ID: 10807093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Forearm pressure distribution during ambulation with elbow crutches: a cross-sectional study.
    Fischer J; Nüesch C; Göpfert B; Mündermann A; Valderrabano V; Hügle T
    J Neuroeng Rehabil; 2014 Apr; 11():61. PubMed ID: 24731773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved harness crutch to reduce upper limb effort in swing-through gait.
    Andrews BJ; Granat MH; Heller BW; MacMahon J; Keating L; Real S
    Med Eng Phys; 1994 Jan; 16(1):15-8. PubMed ID: 8162259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical evaluation of an innovative spring-loaded axillary crutch design.
    Zhang Y; Liu G; Xie S; Liger A
    Assist Technol; 2011; 23(4):225-31. PubMed ID: 22256671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Injuries Associated with Crutch Use: A Narrative Review.
    Manocha RHK; MacGillivray MK; Eshraghi M; Sawatzky BJ
    PM R; 2021 Oct; 13(10):1176-1192. PubMed ID: 33094912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Canes, crutches and walkers.
    Joyce BM; Kirby RL
    Am Fam Physician; 1991 Feb; 43(2):535-42. PubMed ID: 1990737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Some considerations and guidelines for crutch walking.
    Bruno J
    Clin Podiatry; 1984 Aug; 1(2):291-4. PubMed ID: 6536392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphological and biomechanical analysis of a skeleton from Roman imperial necropolis of Casalecchio di Reno (Bologna, Italy, II-III c. A. D.). A possible case of crutch use.
    Belcastro MG; Mariotti V
    Coll Antropol; 2000 Dec; 24(2):529-39. PubMed ID: 11216421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy cost, exercise intensity, and gait efficiency of standard versus rocker-bottom axillary crutch walking.
    Nielsen DH; Harris JM; Minton YM; Motley NS; Rowley JL; Wadsworth CT
    Phys Ther; 1990 Aug; 70(8):487-93. PubMed ID: 2374777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biofeedback device for patients on axillary crutches.
    Ang EJ; Goh JC; Bose K; Toh SL; Choo A
    Arch Phys Med Rehabil; 1989 Aug; 70(8):644-7. PubMed ID: 2764696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BIOMECHANICAL EVALUATION OF PNEUMATIC SLEEVE ORTHOSIS FOR LOFSTRAND CRUTCHES.
    Xiao C; Jahanian O; Slavens BA; Hsiao-Wecksler ET
    IEEE Trans Neural Syst Rehabil Eng; 2023 Jan; PP():. PubMed ID: 37018672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Locomotor-respiratory coupling during axillary crutch ambulation.
    Hurst CA; Kirby RL; MacLeod DA
    Am J Phys Med Rehabil; 2001 Nov; 80(11):831-8; quiz 839-41. PubMed ID: 11805455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of a hands-free crutch in patients with musculoskeletal injuries: randomized control trial.
    Rambani R; Shahid MS; Goyal S
    Int J Rehabil Res; 2007 Dec; 30(4):357-9. PubMed ID: 17975459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Point-Mass Biomechanical Model of the Upper Extremity During Lofstrand Crutch-Assisted Gait.
    Payo I; Perez-Rizo E; Iglesias A; Sanchez-Sanchez B; Torres-Lacomba M; Gil-Agudo A
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3022-3030. PubMed ID: 33326382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Upper extremity biomechanical model of crutch-assisted gait in children.
    Bhagchandani N; Slavens B; Wang M; Harris G
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7164-7. PubMed ID: 19965270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mechanical performance of ambulation using spring-loaded axillary crutches. A preliminary report.
    Parziale JR; Daniels JD
    Am J Phys Med Rehabil; 1989 Aug; 68(4):192-5. PubMed ID: 2765212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.