These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 11322546)
41. Computational study of the factors controlling enantioselectivity in ruthenium(II) hydrogenation catalysts. Di Tommaso D; French SA; Zanotti-Gerosa A; Hancock F; Palin EJ; Catlow CR Inorg Chem; 2008 Apr; 47(7):2674-87. PubMed ID: 18318476 [TBL] [Abstract][Full Text] [Related]
42. Unsymmetrical Iron P-NH-P' Catalysts for the Asymmetric Pressure Hydrogenation of Aryl Ketones. Smith SAM; Lagaditis PO; Lüpke A; Lough AJ; Morris RH Chemistry; 2017 May; 23(30):7212-7216. PubMed ID: 28324643 [TBL] [Abstract][Full Text] [Related]
43. Facile synthesis of a mesoporous silica-supported catalyst for Ru-catalyzed transfer hydrogenation of ketones. Liu G; Yao M; Zhang F; Gao Y; Li H Chem Commun (Camb); 2008 Jan; (3):347-9. PubMed ID: 18399203 [TBL] [Abstract][Full Text] [Related]
44. Origins of enantioselectivity in asymmetric ketone hydrogenation catalyzed by a RuH2(binap)(cydn) complex: insights from a computational study. Feng R; Xiao A; Zhang X; Tang Y; Lei M Dalton Trans; 2013 Feb; 42(6):2130-45. PubMed ID: 23187862 [TBL] [Abstract][Full Text] [Related]
45. A soluble-polymer system for the asymmetric transfer hydrogenation of ketones. Bastin S; Eaves RJ; Edwards CW; Ichihara O; Whittaker M; Wills M J Org Chem; 2004 Aug; 69(16):5405-12. PubMed ID: 15287789 [TBL] [Abstract][Full Text] [Related]
46. Mechanistic investigations into the asymmetric transfer hydrogenation of ketones catalyzed by pseudo-dipeptide ruthenium complexes. Wettergren J; Buitrago E; Ryberg P; Adolfsson H Chemistry; 2009 Jun; 15(23):5709-18. PubMed ID: 19388029 [TBL] [Abstract][Full Text] [Related]
47. Mechanism of the hydrogenation of ketones catalyzed by trans-dihydrido(diamine)ruthenium II complexes. Abdur-Rashid K; Clapham SE; Hadzovic A; Harvey JN; Lough AJ; Morris RH J Am Chem Soc; 2002 Dec; 124(50):15104-18. PubMed ID: 12475357 [TBL] [Abstract][Full Text] [Related]
48. Synthesis of imine and reduced imine compounds containing aromatic sulfonamide: use as catalyst for in situ generation of ruthenium catalysts in transfer hydrogenation of acetophenone derivatives. Dayan S; Arslan F; Kayacı N; Kalaycioglu NO Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():167-75. PubMed ID: 24184620 [TBL] [Abstract][Full Text] [Related]
49. Asymmetric Hydrogenation of Quinoline Derivatives Catalyzed by Cationic Transition Metal Complexes of Chiral Diamine Ligands: Scope, Mechanism and Catalyst Recycling. Luo YE; He YM; Fan QH Chem Rec; 2016 Dec; 16(6):2693-2707. PubMed ID: 27555530 [TBL] [Abstract][Full Text] [Related]
50. Efficient Synthesis of Differentiated syn-1,2-Diol Derivatives by Asymmetric Transfer Hydrogenation-Dynamic Kinetic Resolution of α-Alkoxy-Substituted β-Ketoesters. Monnereau L; Cartigny D; Scalone M; Ayad T; Ratovelomanana-Vidal V Chemistry; 2015 Aug; 21(33):11799-806. PubMed ID: 26139327 [TBL] [Abstract][Full Text] [Related]
51. Employing the structural diversity of nature: development of modular dipeptide-analogue ligands for ruthenium-catalyzed enantioselective transfer hydrogenation of ketones. Pastor IM; Västilä P; Adolfsson H Chemistry; 2003 Sep; 9(17):4031-45. PubMed ID: 12953189 [TBL] [Abstract][Full Text] [Related]
52. Efficient Access to Chiral Benzhydrols via Asymmetric Transfer Hydrogenation of Unsymmetrical Benzophenones with Bifunctional Oxo-Tethered Ruthenium Catalysts. Touge T; Nara H; Fujiwhara M; Kayaki Y; Ikariya T J Am Chem Soc; 2016 Aug; 138(32):10084-7. PubMed ID: 27463264 [TBL] [Abstract][Full Text] [Related]
53. A succession of isomers of ruthenium dihydride complexes. Which one is the ketone hydrogenation catalyst? Abbel R; Abdur-Rashid K; Faatz M; Hadzovic A; Lough AJ; Morris RH J Am Chem Soc; 2005 Feb; 127(6):1870-82. PubMed ID: 15701022 [TBL] [Abstract][Full Text] [Related]
54. A fully integrated continuous-flow system for asymmetric catalysis: enantioselective hydrogenation with supported ionic liquid phase catalysts using supercritical CO(2) as the mobile phase. Hintermair U; Franciò G; Leitner W Chemistry; 2013 Apr; 19(14):4538-47. PubMed ID: 23463487 [TBL] [Abstract][Full Text] [Related]
55. Selective hydrogenation of lactic acid to 1,2-propanediol over highly active ruthenium-molybdenum oxide catalysts. Takeda Y; Shoji T; Watanabe H; Tamura M; Nakagawa Y; Okumura K; Tomishige K ChemSusChem; 2015 Apr; 8(7):1170-8. PubMed ID: 25510671 [TBL] [Abstract][Full Text] [Related]
56. Development plus kinetic and mechanistic studies of a prototype supported-nanoparticle heterogeneous catalyst formation system in contact with solution: Ir(1,5-COD)Cl/gamma-Al2O3 and its reduction by H2 to Ir(0)n/gamma-Al2O3. Mondloch JE; Wang Q; Frenkel AI; Finke RG J Am Chem Soc; 2010 Jul; 132(28):9701-14. PubMed ID: 20575521 [TBL] [Abstract][Full Text] [Related]
57. Anchored [RuCl2(p-cymene)]2 in hybrid zirconium phosphate-phosphonate coated and pillared with double-stranded hydrophobic linear polystyrene as heterogeneous catalyst suitable for aqueous asymmetric transfer hydrogenation. Wang R; Wan J; Ma X; Xu X; Liu L Dalton Trans; 2013 May; 42(18):6513-22. PubMed ID: 23474609 [TBL] [Abstract][Full Text] [Related]
58. Enantioswitchable catalysts for the asymmetric transfer hydrogenation of aryl alkyl ketones. Zaitsev AB; Adolfsson H Org Lett; 2006 Oct; 8(22):5129-32. PubMed ID: 17048860 [TBL] [Abstract][Full Text] [Related]
59. Spherical Silica Modified with Magnesium and Ruthenium-Synthesis, Characterization and Catalytic Properties. Grzelak K; Trejda M Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885533 [TBL] [Abstract][Full Text] [Related]
60. Homogeneous catalytic reduction of dioxygen using transfer hydrogenation catalysts. Heiden ZM; Rauchfuss TB J Am Chem Soc; 2007 Nov; 129(46):14303-10. PubMed ID: 17958423 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]