These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11322971)

  • 1. High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays.
    Normann RA; Warren DJ; Ammermuller J; Fernandez E; Guillory S
    Vision Res; 2001; 41(10-11):1261-75. PubMed ID: 11322971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array.
    Warren DJ; Fernandez E; Normann RA
    Neuroscience; 2001; 105(1):19-31. PubMed ID: 11483297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The turtle visual system mediates a complex spatiotemporal transformation of visual stimuli into cortical activity.
    Hoseini MS; Pobst J; Wright NC; Clawson W; Shew W; Wessel R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Feb; 204(2):167-181. PubMed ID: 29094198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Twelve chromatically opponent ganglion cell types in turtle retina.
    Rocha FA; Saito CA; Silveira LC; de Souza JM; Ventura DF
    Vis Neurosci; 2008; 25(3):307-15. PubMed ID: 18598402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visuotopic reorganization in the primary visual cortex of adult cats following monocular and binocular retinal lesions.
    Schmid LM; Rosa MG; Calford MB; Ambler JS
    Cereb Cortex; 1996; 6(3):388-405. PubMed ID: 8670666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual resolution with retinal implants estimated from recordings in cat visual cortex.
    Eckhorn R; Wilms M; Schanze T; Eger M; Hesse L; Eysel UT; Kisvárday ZF; Zrenner E; Gekeler F; Schwahn H; Shinoda K; Sachs H; Walter P
    Vision Res; 2006 Sep; 46(17):2675-90. PubMed ID: 16571357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal mechanisms in visual perception.
    Pöppel E; Held R; Dowling JE
    Neurosci Res Program Bull; 1977 Oct; 15(3):313-9, 323-553. PubMed ID: 414150
    [No Abstract]   [Full Text] [Related]  

  • 8. Towards the cortical representation of form and motion stimuli generated by a retina implant.
    Schanze T; Greve N; Hesse L
    Graefes Arch Clin Exp Ophthalmol; 2003 Aug; 241(8):685-93. PubMed ID: 12898282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinotopic organization of the lateral suprasylvian area of the cat.
    Djavadian RL; Harutiunian-Kozak BA
    Acta Neurobiol Exp (Wars); 1983; 43(4-5):251-62. PubMed ID: 6660052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of cortical responses to simultaneous electrical stimulation of the retina.
    Halupka KJ; Shivdasani MN; Cloherty SL; Grayden DB; Wong YT; Burkitt AN; Meffin H
    J Neural Eng; 2017 Feb; 14(1):016006. PubMed ID: 27900949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberrant visual projections in the Siamese cat.
    Hubel DH; Wiesel TN
    J Physiol; 1971 Oct; 218(1):33-62. PubMed ID: 5130620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual sensitivity and parallel retinocortical channels.
    Shapley R
    Annu Rev Psychol; 1990; 41():635-58. PubMed ID: 2407178
    [No Abstract]   [Full Text] [Related]  

  • 13. Neurobiology. How cortex reorganizes.
    Kaas JH
    Nature; 1995 Jun; 375(6534):735-6. PubMed ID: 7596403
    [No Abstract]   [Full Text] [Related]  

  • 14. Retinotopic distribution of chromatic responses in human primary visual cortex.
    Vanni S; Henriksson L; Viikari M; James AC
    Eur J Neurosci; 2006 Sep; 24(6):1821-31. PubMed ID: 17004945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early postnatal development of visual function in ganglion cells of the cat retina.
    Tootle JS
    J Neurophysiol; 1993 May; 69(5):1645-60. PubMed ID: 8509831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Receptive-field maps of correlated discharge between pairs of neurons in the cat's visual cortex.
    Ghose GM; Ohzawa I; Freeman RD
    J Neurophysiol; 1994 Jan; 71(1):330-46. PubMed ID: 8158235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel processing of binocular disparity in the cat's retinogeniculocortical pathways.
    Pettigrew JD; Dreher B
    Proc R Soc Lond B Biol Sci; 1987 Dec; 232(1268):297-321. PubMed ID: 2894035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of receptive-field organization of the superior colliculus in Siamese and normal cats.
    Berman N; Cynader M
    J Physiol; 1972 Jul; 224(2):363-89. PubMed ID: 5071401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The organization of the turtle inner retina. II. Analysis of color-coded and directionally selective cells.
    Ammermüller J; Muller JF; Kolb H
    J Comp Neurol; 1995 Jul; 358(1):35-62. PubMed ID: 7560276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Organization of Chromatic Pathways in the Mouse Dorsal Lateral Geniculate Nucleus.
    Denman DJ; Siegle JH; Koch C; Reid RC; Blanche TJ
    J Neurosci; 2017 Feb; 37(5):1102-1116. PubMed ID: 27986926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.