These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11322984)

  • 1. Integrating electrophysiology and neuroimaging of spatial selective attention to simple isolated visual stimuli.
    Mangun GR; Hinrichs H; Scholz M; Mueller-Gaertner HW; Herzog H; Krause BJ; Tellman L; Kemna L; Heinze HJ
    Vision Res; 2001; 41(10-11):1423-35. PubMed ID: 11322984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined spatial and temporal imaging of brain activity during visual selective attention in humans.
    Heinze HJ; Mangun GR; Burchert W; Hinrichs H; Scholz M; Münte TF; Gös A; Scherg M; Johannes S; Hundeshagen H
    Nature; 1994 Dec; 372(6506):543-6. PubMed ID: 7990926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence.
    Hillyard SA; Vogel EK; Luck SJ
    Philos Trans R Soc Lond B Biol Sci; 1998 Aug; 353(1373):1257-70. PubMed ID: 9770220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ERP and fMRI measures of visual spatial selective attention.
    Mangun GR; Buonocore MH; Girelli M; Jha AP
    Hum Brain Mapp; 1998; 6(5-6):383-9. PubMed ID: 9788077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG-fMRI Recording.
    Green JJ; Boehler CN; Roberts KC; Chen LC; Krebs RM; Song AW; Woldorff MG
    J Neurosci; 2017 Aug; 37(33):7803-7810. PubMed ID: 28698387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli.
    Motter BC
    J Neurophysiol; 1993 Sep; 70(3):909-19. PubMed ID: 8229178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial Attentional Selection Modulates Early Visual Stimulus Processing Independently of Visual Alpha Modulations.
    Gundlach C; Moratti S; Forschack N; Müller MM
    Cereb Cortex; 2020 May; 30(6):3686-3703. PubMed ID: 31907512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Appearing and disappearing stimuli trigger a reflexive modulation of visual cortical activity.
    Hopfinger JB; Maxwell JS
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):48-56. PubMed ID: 15907377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The parietal cortex and attentional modulations of activities of the visual cortex.
    Han S; Jiang Y
    Neuroreport; 2004 Oct; 15(14):2275-80. PubMed ID: 15371749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two different mechanisms support selective attention at different phases of training.
    Itthipuripat S; Cha K; Byers A; Serences JT
    PLoS Biol; 2017 Jun; 15(6):e2001724. PubMed ID: 28654635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of temporal predictability on exogenous attentional modulation of feedforward processing in the striate cortex.
    Dassanayake TL; Michie PT; Fulham R
    Int J Psychophysiol; 2016 Jul; 105():9-16. PubMed ID: 27114044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial attention modulates initial afferent activity in human primary visual cortex.
    Kelly SP; Gomez-Ramirez M; Foxe JJ
    Cereb Cortex; 2008 Nov; 18(11):2629-36. PubMed ID: 18321874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective attention to specific features within objects: behavioral and electrophysiological evidence.
    Nobre AC; Rao A; Chelazzi L
    J Cogn Neurosci; 2006 Apr; 18(4):539-61. PubMed ID: 16768359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Form-from-motion: MEG evidence for time course and processing sequence.
    Schoenfeld MA; Woldorff M; Düzel E; Scheich H; Heinze HJ; Mangun GR
    J Cogn Neurosci; 2003 Feb; 15(2):157-72. PubMed ID: 12676054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unmasking motion-processing activity in human brain area V5/MT+ mediated by pathways that bypass primary visual cortex.
    Schoenfeld MA; Heinze HJ; Woldorff MG
    Neuroimage; 2002 Oct; 17(2):769-79. PubMed ID: 12377152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the "C1" component.
    Foxe JJ; Strugstad EC; Sehatpour P; Molholm S; Pasieka W; Schroeder CE; McCourt ME
    Brain Topogr; 2008 Sep; 21(1):11-21. PubMed ID: 18784997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explicit attention interferes with selective emotion processing in human extrastriate cortex.
    Schupp HT; Stockburger J; Bublatzky F; Junghöfer M; Weike AI; Hamm AO
    BMC Neurosci; 2007 Feb; 8():16. PubMed ID: 17316444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Putting spatial attention on the map: timing and localization of stimulus selection processes in striate and extrastriate visual areas.
    Martínez A; Di Russo F; Anllo-Vento L; Sereno MI; Buxton RB; Hillyard SA
    Vision Res; 2001; 41(10-11):1437-57. PubMed ID: 11322985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between attention and perceptual grouping in human visual cortex.
    Khoe W; Freeman E; Woldorff MG; Mangun GR
    Brain Res; 2006 Mar; 1078(1):101-11. PubMed ID: 16500628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas.
    Mehta AD; Ulbert I; Schroeder CE
    Cereb Cortex; 2000 Apr; 10(4):343-58. PubMed ID: 10769247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.