These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11323201)

  • 1. Modelling and simulation of variability and uncertainty in toxicokinetics and pharmacokinetics.
    Nestorov I
    Toxicol Lett; 2001 Mar; 120(1-3):411-20. PubMed ID: 11323201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic framework for the estimation of the adult and child toxicokinetic intraspecies uncertainty factors.
    Pelekis M; Nicolich MJ; Gauthier JS
    Risk Anal; 2003 Dec; 23(6):1239-55. PubMed ID: 14641898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating measures of variability and uncertainty into the prediction of in vivo hepatic clearance from in vitro data.
    Nestorov I; Gueorguieva I; Jones HM; Houston B; Rowland M
    Drug Metab Dispos; 2002 Mar; 30(3):276-82. PubMed ID: 11854145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism, variability and risk assessment.
    Dorne JL
    Toxicology; 2010 Feb; 268(3):156-64. PubMed ID: 19932147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-individual exposure variability interpretation through reflection of biological age algorithm in physiologically based toxicokinetic model: Application to human risk assessment of di-isobutyl-phthalate.
    Jeong SH; Jang JH; Lee YB
    Environ Pollut; 2023 Nov; 336():122388. PubMed ID: 37598929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.
    Hack CE
    Toxicology; 2006 Apr; 221(2-3):241-8. PubMed ID: 16466842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Bayesian population approach to physiological toxicokinetic-toxicodynamic models--an example using the MCSim software.
    Jonsson F; Johanson G
    Toxicol Lett; 2003 Feb; 138(1-2):143-50. PubMed ID: 12559698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuzzy simulation of pharmacokinetic models: case study of whole body physiologically based model of diazepam.
    Gueorguieva II; Nestorov IA; Rowland M
    J Pharmacokinet Pharmacodyn; 2004 Jun; 31(3):185-213. PubMed ID: 15518244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The refinement of uncertainty/safety factors in risk assessment by the incorporation of data on toxicokinetic variability in humans.
    Dorne JL; Renwick AG
    Toxicol Sci; 2005 Jul; 86(1):20-6. PubMed ID: 15800035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Characterization of Population-Wide Tissue- and Metabolite-Specific Variability in Perchloroethylene Toxicokinetics in Male Mice.
    Dalaijamts C; Cichocki JA; Luo YS; Rusyn I; Chiu WA
    Toxicol Sci; 2021 Aug; 182(2):168-182. PubMed ID: 33988684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diazepam pharamacokinetics from preclinical to phase I using a Bayesian population physiologically based pharmacokinetic model with informative prior distributions in WinBUGS.
    Gueorguieva I; Aarons L; Rowland M
    J Pharmacokinet Pharmacodyn; 2006 Oct; 33(5):571-94. PubMed ID: 16810558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating pharmacokinetic and pharmacodynamic fuzzy-parameterized models: a comparison of numerical methods.
    Seng KY; Nestorov I; Vicini P
    J Pharmacokinet Pharmacodyn; 2007 Oct; 34(5):595-621. PubMed ID: 17710517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fuzzy physiologically based pharmacokinetic modeling framework to predict drug disposition in humans.
    Seng KY; Vicini P; Nestorov IA
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6485-8. PubMed ID: 17959432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacometrics: modelling and simulation tools to improve decision making in clinical drug development.
    Gieschke R; Steimer JL
    Eur J Drug Metab Pharmacokinet; 2000; 25(1):49-58. PubMed ID: 11032091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies.
    Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R
    Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probabilistic methods for addressing uncertainty and variability in biological models: application to a toxicokinetic model.
    Banks HT; Potter LK
    Math Biosci; 2004 Dec; 192(2):193-225. PubMed ID: 15627493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing Toxicokinetic Uncertainty and Variability in Risk Prioritization.
    Wambaugh JF; Wetmore BA; Ring CL; Nicolas CI; Pearce RG; Honda GS; Dinallo R; Angus D; Gilbert J; Sierra T; Badrinarayanan A; Snodgrass B; Brockman A; Strock C; Setzer RW; Thomas RS
    Toxicol Sci; 2019 Dec; 172(2):235-251. PubMed ID: 31532498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separating uncertainty and physiological variability in human PBPK modelling: The example of 2-propanol and its metabolite acetone.
    Huizer D; Oldenkamp R; Ragas AM; van Rooij JG; Huijbregts MA
    Toxicol Lett; 2012 Oct; 214(2):154-65. PubMed ID: 22955064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical analysis of Clewell et al. PBPK model of trichloroethylene kinetics.
    Bois FY
    Environ Health Perspect; 2000 May; 108 Suppl 2(Suppl 2):307-16. PubMed ID: 10807560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach.
    Chiu WA; Okino MS; Evans MV
    Toxicol Appl Pharmacol; 2009 Nov; 241(1):36-60. PubMed ID: 19660485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.