These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 11323977)

  • 61. A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease.
    Wan J; Steele B; Spicer SA; Strohband S; Feijóo GR; Hughes TJ; Taylor CA
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):195-206. PubMed ID: 12186712
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Simulations of Magnetohemodynamics in Stenosed Arteries in Diabetic or Anemic Models.
    Alshare A; Tashtoush B
    Comput Math Methods Med; 2016; 2016():8123930. PubMed ID: 27057205
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models.
    Mejia J; Mongrain R; Bertrand OF
    J Biomech Eng; 2011 Jul; 133(7):074501. PubMed ID: 21823750
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery.
    Soulis JV; Giannoglou GD; Chatzizisis YS; Seralidou KV; Parcharidis GE; Louridas GE
    Med Eng Phys; 2008 Jan; 30(1):9-19. PubMed ID: 17412633
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hemodynamics in aneurysm.
    Kumar BV; Naidu KB
    Comput Biomed Res; 1996 Apr; 29(2):119-39. PubMed ID: 8785910
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Coupled fluid-wall modelling of steady flow in stenotic carotid arteries.
    Yakhshi-Tafti E; Tafazzoli-Shadpour M; Alavi SH; Mojra A
    J Med Eng Technol; 2009; 33(7):544-50. PubMed ID: 19591048
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Unsteady stenosis flow prediction: a comparative study of non-Newtonian models with operator splitting scheme.
    Siauw WL; Ng EY; Mazumdar J
    Med Eng Phys; 2000 May; 22(4):265-77. PubMed ID: 11018458
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows.
    Cho YI; Kensey KR
    Biorheology; 1991; 28(3-4):241-62. PubMed ID: 1932716
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparison of Newtonian and non-Newtonian flows in a two-dimensional carotid artery model using the lattice Boltzmann method.
    Boyd J; Buick JM
    Phys Med Biol; 2007 Oct; 52(20):6215-28. PubMed ID: 17921581
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A novel design of a noncylindric stent with beneficial effects on flow characteristics: an experimental and numerical flow study in an axisymmetric arterial model with sequential mild stenoses.
    Papaioannou TG; Christofidis CCh; Mathioulakis DS; Stefanadis CI
    Artif Organs; 2007 Aug; 31(8):627-38. PubMed ID: 17651118
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nonlinear pulse wave reflection at an arterial stenosis.
    Pedley TJ
    J Biomech Eng; 1983 Nov; 105(4):353-9. PubMed ID: 6645444
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fluid-wall modelling of mass transfer in an axisymmetric stenosis: effects of shear-dependent transport properties.
    Sun N; Wood NB; Hughes AD; Thom SA; Xu XY
    Ann Biomed Eng; 2006 Jul; 34(7):1119-28. PubMed ID: 16791491
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Simulation of neutrophil deformation and transport in capillaries using newtonian and viscoelastic drop models.
    Zhou C; Yue P; Feng JJ
    Ann Biomed Eng; 2007 May; 35(5):766-80. PubMed ID: 17380390
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Computation of steady flow in a two-dimensional arterial model.
    Agonafer D; Watkins CB; Cannon JN
    J Biomech; 1985; 18(9):695-701. PubMed ID: 4077866
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Numerical investigation of biomagnetic fluids in circular ducts.
    Tzirakis K; Papaharilaou Y; Giordano D; Ekaterinaris J
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):297-317. PubMed ID: 24123947
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nonlinear buckling of blood vessels: a theoretical study.
    Han HC
    J Biomech; 2008 Aug; 41(12):2708-13. PubMed ID: 18653191
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A mathematical description of blood spiral flow in vessels: application to a numerical study of flow in arterial bending.
    Grigioni M; Daniele C; Morbiducci U; Del Gaudio C; D'Avenio G; Balducci A; Barbaro V
    J Biomech; 2005 Jul; 38(7):1375-86. PubMed ID: 15922748
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Model study on the strain and stress distributions in the vicinity of an arterial stenosis.
    Nakamura M; Sawada T
    Biorheology; 1988; 25(4):685-95. PubMed ID: 3252921
    [TBL] [Abstract][Full Text] [Related]  

  • 79. LES of additive and non-additive pulsatile flows in a model arterial stenosis.
    Molla MM; Paul MC; Roditi G
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):105-20. PubMed ID: 19657797
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Steady flow of a viscous fluid through a network of tubes with applications to the human arterial system.
    Sud VK; Sekhon GS
    J Biomech; 1990; 23(6):513-27. PubMed ID: 2341415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.