These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 11323977)

  • 81. Waves in initially stressed fluid-filled thick tubes.
    Demiray H
    J Biomech; 1997 Mar; 30(3):273-6. PubMed ID: 9119827
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Development of multi-phase models of blood flow for medium-sized vessels with stenosis.
    Kopernik M; Tokarczyk P
    Acta Bioeng Biomech; 2019; 21(2):63-70. PubMed ID: 31741478
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Ultrasonic observation of blood disturbance in a stenosed tube: effects of flow acceleration and turbulence downstream.
    Nam KH; Paeng DG; Choi MJ; Shung KK
    Ultrasound Med Biol; 2008 Jan; 34(1):114-22. PubMed ID: 17900794
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Numerical investigation of blood flow in the distal end of an axis-deviated arterial bypass model.
    Sun A; Fan Y; Deng X
    Biorheology; 2009; 46(2):83-92. PubMed ID: 19458412
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Flow-pressure drop measurement and calculation in a tapered femoral artery of a dog.
    Banerjee RK; Back LH; Cho YI
    Biorheology; 1995; 32(6):655-84. PubMed ID: 8857355
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Numerical modelling of Newtonian and non-Newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis.
    O'Callaghan S; Walsh M; McGloughlin T
    Med Eng Phys; 2006 Jan; 28(1):70-4. PubMed ID: 15905113
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.
    Blake JR; Easson WJ; Hoskins PR
    Ultrasound Med Biol; 2009 Sep; 35(9):1510-24. PubMed ID: 19540655
    [TBL] [Abstract][Full Text] [Related]  

  • 88. [Study on a new rheological equation of state for blood].
    Zeng D; Chen H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Mar; 14(1):1-3. PubMed ID: 9817655
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Red blood cell migration in microvessels.
    Mansour MH; Bressloff NW; Shearman CP
    Biorheology; 2010; 47(1):73-93. PubMed ID: 20448298
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A model for shear stress-induced deformation of a flow sensor on the surface of vascular endothelial cells.
    Barakat AI
    J Theor Biol; 2001 May; 210(2):221-36. PubMed ID: 11371176
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A fluid--structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery.
    Bathe M; Kamm RD
    J Biomech Eng; 1999 Aug; 121(4):361-9. PubMed ID: 10464689
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Shear-slip Mesh Update Method: implementation and applications.
    Behr M; Arora D
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):113-23. PubMed ID: 12745425
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Numerical simulation of unsteady micropolar hemodynamics in a tapered catheterized artery with a combination of stenosis and aneurysm.
    Zaman A; Ali N; Anwar Bég O
    Med Biol Eng Comput; 2016 Sep; 54(9):1423-36. PubMed ID: 26541601
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Pulsatile flow of Casson's fluid through stenosed arteries with applications to blood flow.
    Chaturani P; Samy RP
    Biorheology; 1986; 23(5):499-511. PubMed ID: 3651573
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The haemodynamics of multiple sequential stenoses and the criteria for a critical stenosis.
    Dodds SR; Phillips PS
    Eur J Vasc Endovasc Surg; 2003 Oct; 26(4):348-53. PubMed ID: 14511994
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Significance of Hall currents on hybrid nano-blood flow through an inclined artery having mild stenosis: Homotopy perturbation approach.
    Das S; Pal TK; Jana RN; Giri B
    Microvasc Res; 2021 Sep; 137():104192. PubMed ID: 34081994
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Blood flow in small curved tubes.
    Wang CY; Bassingthwaighte JB
    J Biomech Eng; 2003 Dec; 125(6):910-3. PubMed ID: 14986418
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Real-time assessment of flow reversal in an eccentric arterial stenotic model.
    Ai L; Zhang L; Dai W; Hu C; Shung KK; Hsiai TK
    J Biomech; 2010 Oct; 43(14):2678-83. PubMed ID: 20655537
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Axisymmetric compact finite-difference lattice Boltzmann method for blood flow simulations.
    Sakthivel M; Anupindi K
    Phys Rev E; 2019 Oct; 100(4-1):043307. PubMed ID: 31770883
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models.
    Tang D; Yang C; Kobayashi S; Ku DN
    J Biomech Eng; 2004 Jun; 126(3):363-70. PubMed ID: 15341174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.