These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 11324655)

  • 1. Acoustic discrimination of pathological voice: sustained vowels versus continuous speech.
    Parsa V; Jamieson DG
    J Speech Lang Hear Res; 2001 Apr; 44(2):327-39. PubMed ID: 11324655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels.
    Maryn Y; Corthals P; Van Cauwenberge P; Roy N; De Bodt M
    J Voice; 2010 Sep; 24(5):540-55. PubMed ID: 19883993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of pathological voices using glottal noise measures.
    Parsa V; Jamieson DG
    J Speech Lang Hear Res; 2000 Apr; 43(2):469-85. PubMed ID: 10757697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voice disorder discrimination using vowel acoustic measures in female speakers.
    Nguyen DD; Novakovic D; Madill C
    Int J Lang Commun Disord; 2024 Jun; ():. PubMed ID: 38884559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receiver operating characteristic analysis of acoustic and electroglottographic parameters with different sustained vowels.
    Yılmaz G; Cangi ME; Yelken K
    Logoped Phoniatr Vocol; 2022 Dec; 47(4):284-291. PubMed ID: 34519593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of dysphonic voice: acoustic and auditory-perceptual measures.
    Eadie TL; Doyle PC
    J Voice; 2005 Mar; 19(1):1-14. PubMed ID: 15766846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic correlates of pathologic voice types.
    Wolfe V; Cornell R; Palmer C
    J Speech Hear Res; 1991 Jun; 34(3):509-16. PubMed ID: 2072674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic correlates of breathy vocal quality: dysphonic voices and continuous speech.
    Hillenbrand J; Houde RA
    J Speech Hear Res; 1996 Apr; 39(2):311-21. PubMed ID: 8729919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cepstral analysis of hypokinetic and ataxic voices: correlations with perceptual and other acoustic measures.
    Jannetts S; Lowit A
    J Voice; 2014 Nov; 28(6):673-80. PubMed ID: 24836365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consistency of voice frequency and perturbation measures in children using cepstral analyses: a movement toward increased recording stability.
    Diercks GR; Ojha S; Infusino S; Maurer R; Hartnick CJ
    JAMA Otolaryngol Head Neck Surg; 2013 Aug; 139(8):811-6. PubMed ID: 23949356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination of pathological voices using a time-frequency approach.
    Umapathy K; Krishnan S; Parsa V; Jamieson DG
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):421-30. PubMed ID: 15759572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effectiveness of the glottal to noise excitation ratio for the screening of voice disorders.
    Godino-Llorente JI; Osma-Ruiz V; Sáenz-Lechón N; Gómez-Vilda P; Blanco-Velasco M; Cruz-Roldán F
    J Voice; 2010 Jan; 24(1):47-56. PubMed ID: 19135854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic Analyses of Prolonged Vowels in Young Adults With Friedreich Ataxia.
    Carson C; Ryalls J; Hardin-Hollingsworth K; Le Normand MT; Ruddy B
    J Voice; 2016 May; 30(3):272-80. PubMed ID: 26454768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic measurement of overall voice quality: a meta-analysis.
    Maryn Y; Roy N; De Bodt M; Van Cauwenberge P; Corthals P
    J Acoust Soc Am; 2009 Nov; 126(5):2619-34. PubMed ID: 19894840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of speech production in patients with T1 glottic cancer who underwent laser cordectomy or radiotherapy.
    Hong YT; Park MJ; Hong KH
    Logoped Phoniatr Vocol; 2018 Oct; 43(3):120-128. PubMed ID: 28975857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic correlates of dysphonia: type and severity.
    Wolfe V; Martin D
    J Commun Disord; 1997; 30(5):403-15; quiz 415-6. PubMed ID: 9309531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of high precision F0 extraction algorithms for sustained vowels.
    Parsa V; Jamieson DG
    J Speech Lang Hear Res; 1999 Feb; 42(1):112-26. PubMed ID: 10025548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Use of Arabic Vowels to Model the Pathological Effect of Influenza Disease by Wavelets.
    Daqrouq K; Al-Qawasmi AR; Balamesh A; Alghamdi AS; Al-Amoudi MA
    Comput Math Methods Med; 2019; 2019():4198462. PubMed ID: 31915460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speech waveform perturbation analysis: a perceptual-acoustical comparison of seven measures.
    Askenfelt AG; Hammarberg B
    J Speech Hear Res; 1986 Mar; 29(1):50-64. PubMed ID: 3702379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic comparison of vowel sounds among adult females.
    Franca MC
    J Voice; 2012 Sep; 26(5):671.e9-17. PubMed ID: 22285451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.